关键词:潜在蒸散;干湿气候区;时空分布特征;变化成因;中国 Abstract The spatio-temporal distribution characteristics of ETo regarding national and four climatic regional scales were analyzed at annual,seasonal and decadal scales to obtain the spatio-temporal pattern for ETo. Results show that the average annual ETo is 620-1729mm in China. The regions with the highest ETo are mainly distributed in arid regions,while areas with lower ETo are concentrates in semi-arid,humid and semi-humid regions at both 55-year average and different decadal scales. At a seasonal scale,the spatial distributions of ETo show a clear pattern:ETo is the highest in summer,followed by spring and autumn,and the lowest in winter,accounting for 39%,30%,21% and 10% of average annual ETo respectively. Temporally,the average annual ETo decreased at a rate of 0.52mm/a from 1961 to 2015,and the decreasing trend has a mutation phenomenon in 1972. Although there is an increasing trend since the last decade of the 20th century,it did not detect the mutation year using Mann-Kendall methods. Trends of ETo in different climate regions are distinctive. ETo in most sites decreased in arid region and humid regions,and the meteorological stations tended to decrease in arid regions more than in humid regions. In semi-arid and semi-humid regions,the number of sites is roughly equivalent regarding those that increased or decreased for ETo. More than 85% of the sites in our country have ETo mainly affected by wind speed and sunshine time. The decreasing trend of ETo in recent 55 years was mainly caused by a decrease in wind speed,reduced sunshine time and a slight increase in vapor pressure. The major reason of ETo increase was vapor pressure, and the second were sunshine time and the lowest air temperature.
Keywords:potential evapotranspiration;wet and dry climatic regions;spatio-temporal distribution characteristics;reason for change;China -->0 PDF (4114KB)元数据多维度评价相关文章收藏文章 本文引用格式导出EndNoteRisBibtex收藏本文--> 吴霞, 王培娟, 霍治国, 白月明. 1961-2015年中国潜在蒸散时空变化特征与成因[J]. , 2017, 39(5): 964-977 https://doi.org/10.18402/resci.2017.05.16 WUXia, WANGPeijuan, HUOZhiguo, BAIYueming. Spatio-temporal distribution characteristics of potential evapotranspiration and impact factors in China from 1961 to 2015[J]. 资源科学, 2017, 39(5): 964-977 https://doi.org/10.18402/resci.2017.05.16
本研究收集了中国 560个气象站点1961-2015年的逐日降水、最高气温、最低气温、平均气温、相对湿度、水汽压、10m平均风速和日照时数等数据,资料来源于中国气象局气象数据网[37]。经过数据质量及有效性检查后,筛选出数据较齐全的552个气象站点(图1),对其中个别缺测数据,采用该日相邻两天该要素的平均值替代。 显示原图|下载原图ZIP|生成PPT 图1中国气象站点空间分布及气候分区 -->Figure 1The spatial distribution of meteorological stations and its climatic regions in China -->
2.2 研究方法
2.2.1 气候区划分标准 根据目前普遍采用的降水量与气候区划分标准(表1)[38],将全国分为4个区(图1,见第967页)。 Table 1 表1 表1降水量与气候区划分标准 Table 1The climatic regions based on classification criteria of rainfall
根据全国 552个气象站点 1961-2015年的逐日降水数据,计算研究时段各站点年降水量平均值,使用ArcGIS软件,利用IDW方法进行空间插值(插值精度为0.05°×0.05°),并提取年降水量等值线,根据表1将全国划分为4个区,自西北至东南依次为干旱区、半干旱区、半湿润区和湿润区(图1),各分区内的站点数量如表2所示。 Table 2 表2 表2不同气候区内站点数量 Table 2The number of meteorological stations in different climatic regions
3.2.1 年平均潜在蒸散空间分布特征 1961-2015年,中国年平均ET0为621~1733mm,平均值为1043mm,整体上呈现出南部和西北地区高、东北和中部地区低的空间分布格局(图2)。ET0高值区主要分布在内蒙古自治区西部、甘肃省西北部、新疆维吾尔自治区东南部、云南省中南部及南部沿海地区,大致为1200~1733mm,其中最高值出现在内蒙古西部拐子湖地区,约1733mm;ET0低值区主要包括中国东北部、中西部(四川盆地、青海省中西部及东南部、甘肃省和重庆市南部、贵州省北部)及长江和黄河中上游地区等,年平均ET0大致为621~900mm,其中最低值出现在中国最北部漠河地区,约621mm;其余地区ET0为900~1200mm。 显示原图|下载原图ZIP|生成PPT 图2潜在蒸散空间分布 -->Figure 2The spatial distribution of annual average potential evapotranspiration -->
从四个干湿气候分区的年平均ET0来看,干旱区最高,达到1164mm;湿润区和半干旱区居中,分别为1067mm和1042mm;半湿润区最低,在960mm以下。高歌等对中国2000年以前的研究结果也显示湿润区ET0略高于半湿润区[25]。干旱区ET0一般都高于1050mm,其中中部及东部的沙漠、荒漠区ET0较高;半干旱区ET0一般在750~1050mm,其中中西部及东北部值较低;半湿润区ET0一般低于1050mm,中西部及东北部地区值较低,低于900mm,东北地区北部低于750mm;湿润区ET0一般为750~1350mm,其中云南中东部及南部沿海地区值较高,甚至超过1350mm,中北部地区值较低。由此可见,1961-2015年,中国ET0高值区主要分布在干旱区的中部和东部及湿润区的南部,低值区主要分布在半干旱区的中西部及东北部、半湿润区的中西部及东北部和湿润区的中北部地区。 3.2.2 季节平均潜在蒸散空间分布特征 全国范围内,夏季的ET0平均值最高,为410mm,其次是春季309mm和秋季216mm,冬季最低为108mm,分别占全年的39%,30%,21%和10%(图3)。夏季的ET0最高值出现在新疆阿拉山口,为836mm;冬季的ET0最低值出现在内蒙古额尔古纳右旗,为8.7mm。 显示原图|下载原图ZIP|生成PPT 图3季节平均潜在蒸散空间分布 -->Figure 3The spatial distribution of seasonal average potential evapotranspiration -->
春季,从干旱区到湿润区,ET0整体呈现减少趋势:干旱区北部、西部和南部部分地区ET0较低,一般为300~350mm,部分地区低于300mm,其余地区一般高于350mm,其中,中部及东部部分地区高于450mm;半干旱区、半湿润区和湿润区一般分别为250~400mm、250~350mm和低于300mm;其中,湿润区中部值低于250mm,而西南部值较大,部分地区超过400mm。 夏季,ET0表现为从北到南、自中部向东北和西南逐渐减小的趋势,具体为:干旱区ET0较高,一般高于450mm,中北部和东部地区高于550mm;半干旱区东北部、半湿润区中部及湿润区东部ET0较高,一般为400~500mm,其中半干旱区中北部甚至达到550~600mm;其余地区ET0较低,部分地区低于400mm。 秋季,ET0表现为自西北-东南向中部减小的趋势。干旱区除北部小部分区域ET0低于200mm外,其余大部分地区都高于250mm;半干旱区中部及东北部地区ET0较低,低于200mm,其余地区一般为200~250mm;半湿润区中部及东北部地区ET0较低,低于200mm,东北部分地区甚至低于150mm,其余地区在200~250mm;湿润区ET0自西北向东南呈增加趋势,中北部地区低于200mm,东南部地区高于300mm,其余地区一般为200~300mm。 冬季,ET0自北向南呈现增加趋势。干旱区、半干旱区中部和北部、半湿润区东北部和中部部分地区、湿润区中北部部分地区ET0几乎全部低于100mm;湿润区西南部及南部地区ET0高于200mm;其余地区一般为100~200mm。中国ET0在各季节中的分布特征与高歌等[43]针对中国十大流域的研究结果趋于一致。 综合来看,干旱区的季节间ET0变化最大,其次是半干旱区东北部、半湿润区中北部和湿润区西部地区。 3.2.3 年代际平均潜在蒸散空间分布特征 从1961-2015年各年代际ET0的空间分布图看(图4,见第969页),各干湿气候区的ET0在各年代际的变化不大。从区域上看,中国西北部在20世纪60年代和70年代 ET0高于1200mm的范围(红色区域)较大,之后开始缩小,到2000年后范围又略有扩大,但仍小于70年代;西南部ET0高于1200mm的范围在20世纪60-90年代较小,2000年之后范围扩大。长江和黄河中上游地区在20世纪60-70年代 ET0低于900mm的范围(蓝色区域)较小,之后开始扩大,2000年后范围显著缩小;长江下游地区20世纪60年代 ET0较高,之后逐渐减小。 显示原图|下载原图ZIP|生成PPT 图4中国不同年代际平均潜在蒸散空间分布 -->Figure 4The spatial distribution of average potential evapotranspiration in different decades in China -->
3.3.1 全国年平均潜在蒸散时间变化趋势 1961-2015年,整体上中国年平均ET0以0.52mm/a的速率减少,55年共减少28.6mm,相对变化量为2.5%(图5,见第970页),减少趋势通过了0.01的信度检验。高歌等、尹云鹤等、刘昌明等的研究也得出90年代以前ET0呈下降趋势,但图5显示90年代以后ET0存在上升趋势[25,33,36]。 显示原图|下载原图ZIP|生成PPT 图5中国年平均潜在蒸散时间变化趋势 -->Figure 5The temporal change trend of annual average potential evapotranspiration in China -->
对近几个年代ET0分别做线性回归(表3,见第970页),发现全国范围内20世纪60-80年代各年代ET0均呈下降趋势,1961-1990年整体也呈下降趋势且通过了0.01的显著性检验,该下降趋势主要受风速、日照时数和最高气温影响较大,与第1章节中各位专家研究结果一致。90年代以后各年代ET0均呈增加趋势,1991-2015年整体也呈上升趋势且通过了0.01的显著性检验,该下降趋势主要受水汽压、日照时数和最低气温的影响。从四个气候分区来看,干旱区呈上升-下降-上升趋势,半干旱区、半湿润区均呈上升-下降-上升-下降趋势,湿润区则呈下降-上升趋势。干旱区ET0年代际变化幅度最大,为88mm,其次是湿润区47mm和半干旱区31mm,半湿润区最小30mm;其中,干旱区和湿润区的ET0变化幅度大于全国平均值39mm。 Table 3 表3 表3各年代平均潜在蒸散变化趋势的回归系数及与潜在蒸散偏相关系数较高的前三个气象因子 Table 3The regression coefficients of the change trend of average potential evapotranspiration and top 3 meteorological factors with higher partial correlation coefficients with potential vapotranspiration in different decades
年份
年代
回归系数
气象因子排序及其偏相关系数
1961-1990年
1960s
-0.969
-1.838**
1风速/**
2日照时数/**
3最高气温/**
1970s
-1.483
1980s
-2.372
1991-2015年
1990s
2.981
1.326**
1水汽压/**
2日照时数/**
3最低气温/**
2000s
0.448
2011-2015年
2.585
注:**和*分别表示通过0.01和0.05显著性检验。 新窗口打开 利用Mann-Kendall方法对中国1961-2015年年平均ET0进行分析(图6),由UFk曲线可见,1961-2015年,中国ET0呈明显的下降趋势。并且80年代开始这种趋势大大超过0.05临界线(-1.96)甚至超过0.001显著性水平(u0.001=±2.56),表明中国ET0的下降趋势是十分显著的。根据UFk和UBk曲线交点的位置,确定中国ET0在1972年存在下降趋势突然增大的现象。然而,对于90年代以后ET0的增大趋势,M-K检验并未检测到突变点。 显示原图|下载原图ZIP|生成PPT 图61961-2015年年平均潜在蒸散Mann-Kendall检验结果 -->Figure 6The statistical results of average annual potential evapotranspiration in Mann-Kendall test from 1961 to 2015 -->
3.3.2 各站点年平均潜在蒸散时间变化趋势分析 对全国552个站点1961-2015年年平均ET0进行线性变化趋势分析,利用最小二乘法构建年平均ET0与时间的一元线性回归方程,方程的线性拟合斜率k表示年平均ET0的变化趋势,其空间分布特征如图7a所示。在全国552个站点中,有334个站点ET0呈减少趋势(k≤0),占研究站点总数的60.5%;并且-2<k≤0的站点分布范围最为广泛,k≤-4的站点数最少。研究站点中有218个站点ET0呈增加趋势(k>0),占研究站点总数的39.5%。其中,0<k≤2的站点分布较为广泛,k>2的站点分布较为分散。 显示原图|下载原图ZIP|生成PPT 图71961-2015年各气象站点平均潜在蒸散线性变化趋势及显著性检验结果空间分布 -->Figure 7The spatial distribution of the linear trend of annual average potential evapotranspiration and its significant test for each meteorological station from 1961 to 2015 -->
从整体上看(图7a),干旱区k值基本都为负值,说明干旱区的大部分站点ET0呈减少趋势,并且约有一半区域 ≤-2;但在干旱区西部和东部局部地区ET0呈增加趋势,部分地区 >2。半干旱区和半湿润区 值一般为-2< ≤2,且呈增加和减小趋势的站点数量大致相等,少部分地区 ≤-2或 >2。湿润区大部分地区ET0呈减少趋势,但是减少幅度(-2< ≤0)多小于干旱区;边界处部分地区ET0呈增加趋势,少部分地区k>2。 对各站点ET0的线性变化趋势进行显著性检验,空间分布特征如图7b所示。通过0.1信度检验的站点共311个,占研究站点总数的56%;这其中67%的站点通过了0.01的信度检验。未通过显著性检验站点有241个,占研究站点总数的44%(表4)。4个干湿气候分区中均分别有半数左右站点通过显著性检验。 Table 4 表4 表4各气候分区年平均潜在蒸散线性变化趋势显著性检验结果 Table 4The significant test results of the linear trend of annual average potential evapotranspiration in different climatic regions
对中国1961-2015年各气象站点ET0和气象因子年平均值进行偏相关检验分析,得出ET0与各气象因子偏相关系数绝对值大小依次为风速(pv)、日照时数(psn)、水汽压(pea)、最高气温(pmax)、相对湿度(ps)、最低气温(pmin)和平均气温(pt),其偏相关系数的全国平均值分别为0.816、0.723、-0.246、0.228、-0.213、0.119、0.041。ET0与前三个因子(风速、日照时数和水汽压)的偏相关系数空间分布见图8。在全国范围内,除零星地区pv(图8a)较低外,其余地区一般高于0.6;其中,干旱区北部、半干旱区东北部及中西部部分地区、半湿润区东北部及中西部部分地区、湿润区中部和东部地区的pv在0.6~0.8,其余地区高于0.8。全国范围内第一影响因素为风速的站点有294个,占全部站点的64%,主要分布在中国北方地区、西南零星地区和东南部分地区;第二影响因素为风速的有181个站点,占站点总数的33%。psn(图8b)呈现出由北向南逐渐增高的趋势;其中,干旱区北部、半干旱区东北部和半湿润区东北部部分地区psn低于0.4,干旱区中部和东部、半干旱区东北部、半湿润区东北部psn一般为0.4~0.6,干旱区西部部分地区、半湿润区西部及中部零星地区、湿润区大部psn高于0.8,其余地区一般为0.6~0.8。全国范围内第一影响因素为日照时数的站点有194个,占全部站点总数的35%,主要集中分布在长江中下游地区、东北部分地区、西南地区南部及东部和南部沿海地区;第二影响因素为日照时数的有294个站点,占站点总数的53%。潜在蒸散与水汽压的偏相关系数pea(图8c),除中国干旱区北部、半干旱区及半湿润区的东北部和西部、湿润区的部分地区为正值外,其余地区均为负值;其中,中国西北和中北部地区、西南零星地区pea相对较高,绝对值一般高于0.6;个别零星地区绝对值高于0.8;干旱区北部、中国东北地区、半干旱区西部及半湿润区西部部分地区、湿润区大部pea较低,绝对值一般低于0.2。水汽压多为站点ET0的第二影响因素,共28个站点,占总数的5%,主要集中分布在内蒙古中部、陕西、山西及西藏的部分站点。 显示原图|下载原图ZIP|生成PPT 图8各气象站点年平均潜在蒸散与前三个气象因子偏相关系数 -->Figure 8The partial correlation coefficients between annual average potential evapotranspiration and top 3 meteorological factors in China -->
将每个站点与ET0偏相关系数最高的两个气象因子进行综合分析(图9),发现偏相关系数排在前两位的气象因子中,第一影响因素为风速、第二影响因素为日照时数的站点共有294个,占总数的53%以上,主要分布在中国西南和东南部分地区、长江流域以北;第一影响因素为日照时数、其次为风速的站点共有177个,占总数的32%,主要分布在中国长江流域、东北和西南零星地区、东南部分地区;水汽压对中国中北部地区和西北零星地区(内蒙古中部、陕西、山西及西藏的部分站点)的ET0影响较大,且多为第二影响因素(风速为第一影响因素),说明中国大部分地区ET0的变化与风速和日照时数有关。该研究结果与第一节中列举的各位专家的结果整体趋于一致,但Thomas[32]的研究结果认为中国东北地区ET0变化的主导因子为最高温度,本文研究认为是风速。 显示原图|下载原图ZIP|生成PPT 图9各气象站点与年平均潜在蒸散偏相关系数较高的两个因子组合分布注:图中“+”前的字母表示该站点与潜在蒸散偏相关系数最高的气象因子,“+”后的字母表示该站点与潜在蒸散偏相关系数次高的气象因子(v为风速、sn为日照时数、ea为水汽压)。 -->Figure 9The spatial distribution of meteorological factors with higher partial correlation coefficient between annual ET0 and meteorological factors in China -->
分析全国1961-2015年风速、日照时数和水汽压的时间变化趋势(图10),可知风速在19世纪60年代初期变化相对稳定,在60年代末及70年代初期处于较高水平,之后呈明显的减小趋势;日照时数也呈减小趋势,但较风速的减小趋势弱;而水汽压基本稳定,呈微弱的增加趋势。前面分析可知,风速和日照时数与ET0呈现正相关关系,水汽压与ET0呈负相关关系,因此,风速的减小、日照时数的降低和水汽压的微弱增加,共同导致过去55年中国ET0整体上表现出减少的趋势;而风速在70年代初的明显减小趋势可能是引起中国年平均ET0在1972年存在下降速率突然增大现象的主要原因。 显示原图|下载原图ZIP|生成PPT 图101961-2015年中国风速、日照时数和水汽压随时间相对变化趋势 -->Figure 10The relative change trend of wind speed,sunshine hour and vapor pressure in China from 1961 to 2015 -->
4 结论与讨论
以中国1961-2015年552个气象站点的逐日气象数据及地理信息数据为基础,利用Penman-Monteith公式,计算得到全国各站点逐日潜在蒸散,根据降水量与气候区划分标准,以中国近55年平均降水量数据为依据,将全国划分为四个气候分区:即干旱区、半干旱区、半湿润区和湿润区,对各气候分区不同时段潜在蒸散进行统计,分析中国1961-2015年潜在蒸散的时空变化特征及其变化成因,得到以下主要结论: (1)1961-2015年,中国552个站点各站点1961-2015年ET0的平均值在621~1733mm之间,表现出西北和南部地区高、东北和中部地区低的空间分布格局,其中高值区主要分布在干旱区中西部及湿润区南部,低值区主要分布在半干旱区和半湿润区的中西部及东北部、湿润区中北部地区。 (2)全国范围内夏季ET0最高、春季和秋季次之、冬季最低,分别占年平均ET0的39%、30%、21%和10%;各季节ET0在空间分布上差异明显,春季呈自北向南逐渐减小的趋势,夏季为自北向南、自中部向东北和西南逐渐减小的趋势,秋季则表现为自西北-东南向中部减小的趋势,冬季与春季相反,呈自北向南逐渐增大的趋势。近几个年代际,全国平均ET0呈微弱的减小-增加趋势,ET0变化幅度最大的区域主要分布在内蒙古西部、新疆、长江流域及黄河上游地区;且在各年代际内,ET0均表现为干旱区最高、半干旱区和湿润区次之、半湿润区最低的空间分布格局。 (3)1961-2015年,整体上中国年平均ET0以0.52mm/a的速率减少,干旱区和湿润区内大部分站点年平均ET0呈减少趋势,半干旱区和半湿润区呈现增加和减少趋势的站点数则大致相等。Mann-Kendall方法的检验结果显示中国年平均ET0的下降趋势在1972年存在下降速率突然增大的现象。20世纪90年代以后ET0有增加的趋势,但是M-K检验并未检测到突变点。 (4)中国85%以上站点ET0的变化与风速和日照时数相关,1961-2015年ET0呈减少趋势主要是风速的减小、日照时数的降低和水汽压的微弱增加共同作用的结果。20世纪90年代以后ET0的增加趋势主要是由水汽压、日照时数和最低气温共同导致的。 本文的计算结果是基于气象台站观测数据得到的,实际上气象台站与周边其他区域的土地利用类型并不完全一致,导致基于气象台站观测数据计算得到的ET0对周边区域的代表性存在一定的局限性。但是在现有地面实测数据的条件下,仅能得到这样的计算结果。后续研究中应进一步分析不同土地利用格局对ET0的影响。 国际上通用的ET0计算过程中,地表辐射的计算只考虑了日照时数,主要是该要素相对客观、定量、可描述。然而,大气透明度和云量也是影响地表辐射的关键要素,但是在目前的地面气象观测中,大气透明度并未列入常规观测要素中;云量虽然有观测记录,但是该记录具有一定的主观性,且相同的云量、不同的云状对地表辐射的影响程度不同。因此上述两个影响地表辐射的要素在现有地面观测条件下还不具备定量描述ET0的能力,可作为后续研究重点。 另外,在分析ET0变化趋势成因时,后续研究中应考虑各因子间的相关性及多因子的综合效应,以明确ET0的主要影响因子。 The authors have declared that no competing interests exist.
Allen RG,Pereira LS,RaesD, et al. Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements [R]. Rome:FAO Irrigation and Drainage Paper 56,1998. [本文引用: 2]
[ChenL,Fang LJ,LiS.Variation characteristics of potential evapotranspiration in growing season of crops in northeast China [J]. Journal of Catastrophology,2010,25(2):92-96.] [本文引用: 2]
[Zhai QF,AoX,Sun BL,et al.The change of potential evapotranspiration from 1981 to 2010 and the analysis of ecological water demand [J]. Chinese Agricultural Science Bulletin,2014,30(17):228-235.] [本文引用: 1]
[Zhang YF,Deng JL,Guan DX,et al.Spatiotemporal changes of potential evapotranspiration in Songnen Plain of Northeast China [J]. Chinese Journal of Applied Ecology,2011,22(7):1702-1710.] [本文引用: 1]
[Wang BL,Li GS.Spatial distribution and temporal trends in potential evapotranspiration(ET0)over Liaohe Delta in the period 1961 -2010 [J]. Journal of Southwest University (Natural Science Edition),2014,36(9):154-162.] [本文引用: 1]
[Liu XF,Pan YZ,Zhang JS,et al.Spatiotemporal variation patterns of potential evapotranspiration in five provinces of North-west China in 1960-2011 [J]. Chinese Journal of Applied Ecology,2013,24(9):2564-2570.] [本文引用: 2]
[ZhuoM,Liu PX,Zhang YN,et al.Study on temporal and spatial changes of the potential evapotranspiration and its impact factors in Loess Plateau of Gansu province [J]. Research of Soil and Water Conservation,2012,19(1):70-75.] [本文引用: 2]
[ZhuoM.Sensitivity of the Potential Evapotranspiration to Different Climatic Regions from 1960 to 2009 in Gansu Province [D]. Lanzhou:Northwest Normal University,2012.] [本文引用: 1]
[Zuo DP,Xu ZX,ChengL,et al.Spatial-temporal variations and mutations of potential evapotranspiration in the Weihe River Basin [J]. Resources Science,2011,33(5):975-982.] [本文引用: 1]
[Tang XP,Luo LH,ZhuoM,et al.Impact analysis of climate change on potential evapotranspiration over mid-stream of Yarlung Zangbo River in Tibetan Plateau [J]. Plateau and Mountain Meteorology Research,2011,31(3):49-53.] [本文引用: 1]
[LiuQ,Yan CR,Zhao CX,et al.Changes of daily potential evapotranspiration and analysis of its sensitivity coefficients to key climatic variables in Yellow River Basin [J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(17):157-166.] [本文引用: 2]
[WangQ,Zhang MJ,Pan SK,et al.Spatiotemporal variation patterns of potential evapotranspiration in the Yangtze River Basin of China [J]. Chinese Journal of Ecology,2013,32(5):1292-1302.] [本文引用: 2]
[CaoW,Shen SH,Duan CF.Temporal-spatial variations of potential evapotranspiration and quantification of the causes in Northwest China [J]. Acta Ecologica Sinica,2012,32(11):3394-3403.] [本文引用: 2]
[DuJ,LiC,LaB,et al.Climatic change of terrestrial surface humid index and its impact factors over Tibet in recent 35 years [J]. Acta Meteoro-logica Sinica,2009,67(1):158-164.] [本文引用: 1]
[DuJ,HuJ,Tang SJ,et al.Analysis of climatic dry and wet conditions in Yamdok Tso Lake Basin of Tibet [J]. Chinese Journal of Ecology,2008,27(8):1379-1385.]
[16]
Chen SB,Liu YF,ThomasA.Potential evapotranspiration trends and its spatial distributions on the Tibetan Plateau from 1961 to 2000 [J]. Journal of Natural Resources,2008,23(6):990-1008.
[17]
ZhangY,LiuC,TangY,et al.Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau [J]. Journal of Geophysical Research Atmospheres,2007,112(D12):1103-1118. [本文引用: 2]
[Jia ZL.Kashgar River Basin reference crops evapotranspiration quantity change trend and its main influencing factors analysis [J]. Journal of Anhui Agriculture Science,2014,(25):8866-8869.] [本文引用: 1]
[Zhao FN,ZhaoM,WangY,et al.Variation characteristics of reference evapotranspiration and pan evaporation during 1960-2009 in Shiyang River Basin [J]. Journal of Arid Meteorology,2014,32(4):560-568.] [本文引用: 1]
[Wang XD,Ma XQ,XuY,et al.Variation of reference crop evapotranspiration and contribution of main factors in the Huaihe Basin [J]. Chinese Journal of Agrometeoro-logy,2013,34(6):661-667.] [本文引用: 1]
[21]
XuC,GongL,JiangT,et al.Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang(Yangtze River)catchment [J]. Journal of Hydrology,2006,327(1-2):81-93. [本文引用: 2]
[Yang LS,Li CB,Wang SB,et al.Sensitive analysis of potential evapotranspiration to key climatic factors in Taohe River Basin [J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(11):102-109.] [本文引用: 2]
[Luo XP,Wang KL,JiangH,et al.Analysis on temporal-spatial variations of potential evapotranspiration in the Heihe River Basin during 2000-2008 [J]. Journal of Anhui Agriculture Science,2011,39(25):15737-15738.] [本文引用: 1]
[Wang YJ,LiJ,Lin ZH,et al.Assessing the impacts of climate change on the potential evapotranspiration in the upper-middle reach of the Yellow River [J]. Science of Soil and Water Con-servation,2013,11(5):48-56.] [本文引用: 1]
[GaoG,Chen DL,Ren GY,et al.Spatial and temporal variations and controlling factors of potential evapotranspiration in China:1956-2000 [J]. Journal of Geographical Sciences,2006,25(3):378-387.] [本文引用: 4]
ChattopadhyayN,HulmeM.Evaporation and potential evapo-transpiration in India under conditions of recent and future climate change [J]. Agricultural & Forest Meteorology,1997,434(1):55-73.
[28]
BandyopadhyayA,BhadraA,Raghuwanshi NS,et al.Temporal trends in estimates of reference evapotranspiration over India [J]. Journal of Hydrologic Engineering,2014,14(5):508-515. [本文引用: 1]
[29]
Roderick ML,Farquhar GD.Changes in Australian pan evaporation from 1970 to 2002 [J]. International Journal of Climatology,2004,24(9):1077-1090. [本文引用: 1]
[30]
EslamianS,Khordadi MJ,Abedi-KoupaiJ.Effects of variations in climatic parameters on evapotranspiration in the arid and semi-arid regions [J]. Global & Planetary Change,2011,78(3-4):188-194. [本文引用: 1]
[31]
HupetF,VancloosterM.Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration [J]. Journal of Hydrology,2001,243(3-4):192-204. [本文引用: 1]
[32]
ThomasA.Spatial and temporal characteristics of potential evapotranspiration trends over China [J]. International Journal of Climatology,2000,20(4):381-396. [本文引用: 2]
[ Yin YH,Wu SH,Dai EF.Determining factors in potential evapotrans-piration changes over China in the period 1971-2008 [J]. Chinese Science Bulletin,2010,55(22):2226-2234.] [本文引用: 2]
[Wang YP,HuangY,ZhangW.Variation and tendency of surface aridity index from 1960 to 2005 in Three Provinces of Northeast China [J]. Advances in Earth Science,2008,23(6):619-627.]
[Xie XQ,WangL.Changes of potential evaporation in Northern China over the past 50 years [J]. Journal of Natural Resources,2007,22(5):683-691.] [本文引用: 1]
[Liu CM,ZhangD.Temporal and spatial change analysis of the sensitivity of po-tential evapotranspiration to meteorological influencing factors in China [J]. Acta Geographica Sinica,2011,66(5):579-588.] [本文引用: 2]
[ZhuQ,Zhang WC,Yu JH.Research on space interpolation methods based on GIS [J]. Journal of Jiangxi University(Natural Science),2004,28(2):183-188.] [本文引用: 1]
[Zeng HW,Li LJ,Zhang YX,et al.Study on spatial interpolation of precipitation with large scale samples:A case study on 2009’s precipitation of China [J]. Progress in Geo-graphy,2011,30(7):811-818.] [本文引用: 1]
[41]
Fisher RA.Statistical Methods for Research Workers [M]. Edin-burgh:Oliver and Boyd,1946. [本文引用: 2]
GaoG,Chen DL,Ren GY,et al.Spatial and temporal variations and controlling factors of potential evapotranspiration in China:1956-2000 [J]. Journal of Geographical Sciences,2006,16(1):3-12. [本文引用: 1]
[Yin YH,Wu SH,ZhengD,et al.Regional differences of dry and wet condition of China during the last 30 years [J]. Chinese Science Bulletin,2005,50(15):1636-1642.] [本文引用: 1]