Spatiotemporal evolution of impervious surface percentage and its impact on vegetation in Beijing-Tianjin-Hebei region
ZHAO Anzhou,1,2, LIU Xianfeng3, PEI Tao,2,4, WANG Jinjie1, ZHANG Anbing1, SONG Ci2,41. School of Mining and Geomatics, Hebei University of Engineering, Handan 056038, Hebei, China 2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China 3. School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China 4. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract Exploring the urbanization effects on vegetation is crucial for the urban ecological management and green space planning. Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index (MODIS-EVI) and impervious surface data from 2000 to 2018 were utilized to assess the spatiotemporal impervious surface percentage (ISP) and its impact on vegetation by the piecewise regression model, trend analysis, and correlation analysis. Results indicated that (1) During the whole period, the ISP significantly increased (P<0.01), with the linear tendency being 0.024%/a. There existed two distinct periods with different increasing trends, with the linear tendency being 0.0019/a (P<0.01) and 0.0037/a (P<0.01) in terms of 2000-2010 and 2011-2018, respectively. The ISP from 2011 to 2018 increased faster than that from 2000 to 2010. (2) Rapid increases in the ISP were mainly distributed in the urban (0.5<ISP≤0.75) and suburban (0.25<ISP≤0.5) areas. Slow increases in the ISP were mainly distributed in the urban core (0.75<ISP≤1) and rural areas (0<ISP≤0.05). (3) From the perspective of change trends of rural EVI and the ΔEVI in urban areas, the areas with significant decreased ISP were mainly distributed in the urban, suburban, and exurban areas. The ΔEVI decreased significantly in urban, suburban and exurban areas for 6 of 13 cities, 6 of 13 cities and 3 of 13 cities, respectively (P<0.05). By contrast, the areas with increased ISP were mainly distributed in the urban core, and increased significantly for cities of Beijing, Tianjin and Baoding (P<0.05). The stable or even significant increase trend of ΔEVI in the urban core (0.75<ISP≤1) in most cities in Beijing-Tianjin-Hebei region could primarily be attributed to the positive effects derived from the urban ecological environment, and improvement of the preservation and construction of the urban green space. In terms of spatial variation, EVI increased significantly in the urban cores of Beijing and Tianjin, and decreased significantly in the suburban and exurban areas of Beijing, Tianjin and Shijiazhuang. (4) As for spatial trends, the annual maximum EVI from 2000 to 2018 decreased significantly (P<0.05) with elevating ISP for all the cities in the Beijing-Tianjin-Hebei region. The highest decaying rate was observed in Qinhuangdao (-0.0081/a), while the lowest decaying rate was found in Zhangjiakou (-0.0043/a). From the view of temporal variation, significant negative correlation between ISP and EVI was found in the study region and the correlation coefficient was -0.4912. The results can provide scientific and theoretical basis for research on vegetation change in the process of rapid urban expansion in China. Keywords:impervious surface percentage;EVI;spatiotemporal change;Beijing-Tianjin-Hebei region
PDF (6913KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 赵安周, 刘宪锋, 裴韬, 王金杰, 张安兵, 宋辞. 京津冀地区不透水表面覆盖率的时空演变及其对植被的影响. 地理研究[J], 2021, 40(6): 1582-1595 doi:10.11821/dlyj020200509 ZHAO Anzhou, LIU Xianfeng, PEI Tao, WANG Jinjie, ZHANG Anbing, SONG Ci. Spatiotemporal evolution of impervious surface percentage and its impact on vegetation in Beijing-Tianjin-Hebei region. Geographical Research[J], 2021, 40(6): 1582-1595 doi:10.11821/dlyj020200509
植被指数数据来源于美国国家航空航天局NASA的EOS/MODIS提供的16 d合成的MOD13A2-EVI数据(https://ladsweb.modaps.eosdis.nasa.gov/),时间跨度为2000年2月—2018年12月,空间分辨率为1 km。该数据已经过了大气校正、几何纠正等数据预处理过程,同时在计算的时候使用了背景值的修订参数以及蓝光波段,有效消除了土壤背景值和大气气溶胶的影响,与NDVI数据相比,该数据更加适用于分析植被较为稀疏的城镇等地的植被变化[31,32]。利用 MODIS Reprojection Tools(MRT)对原始数据进行重投影和拼接,经过裁剪得到京津冀2000—2018年的16 d合成的EVI数据集。为进一步减少大气气溶胶、云等因素的影响,采用最大值合成方法(Maximum Value Composite,MVC)得到2000—2018年最大EVI数据[33](图1)。2000—2018年京津冀不透水表面数据来源于清华大学地球系统研究中心(Finer Resolution Observation and Monitoring-Global Land Cover),该数据的空间分辨率为30 m,由Google Earth Engine(GEE)平台上提供的Landsat影像(TM/ETM+/OLI)解译得到,总体精度高于90%(图2a、图2d)[34]。
Fig. 2The impervious surface, impervious surface percentage(ISP), and regions with different ISP values of the Beijing-Tianjin-Hebei region in 2000 and 2018
Fig. 4Temporal trends of ISP in urban zones (urban core, urban areas, suburban areas and exurban areas) in the Beijing-Tianjin-Hebei region during 2000-2018
Tab. 2 表2 表22000—2018年京津冀地区13个城市的农村EVI和不同城市区域ΔEVI的变化趋势 Tab. 2Change trends of rural EVI and the ΔEVI in different urban zones of the Beijing-Tianjin-Hebei region during 2000 to 2018
[LiTongping. 40 years of Chinese urbanization: Key findings and future options Population Research, 2018, 42(6): 15-24.] DOI: CNKI: SUN: RKYZ.0.2018-06-002. [本文引用: 1]
[CuiXuegang, FangChuanglin, ZhangQiang. Coordination between environmental regulation intensity and urbanization quality: Case study of Beijing-Tianjin-Hebei urban agglomeration Journal of Natural Resources, 2018, 33(4): 563-575.] DOI: 10.11849/zrzyxb.20170208. [本文引用: 1]
[Development Research Center of the State Council and World Bank. China: Promoting efficient, inclusive and sustainable urbanization Management World, 2014: (4): 5-41.] DOI: 10.19744/j.cnki.11-1235/f.2014.04.004. [本文引用: 1]
[LuoYi, ZhaoYisong, YangKun, et al. Characteristics of Dianchi Lake watershed impervious surface expansion and its effect of water environment during urbanization Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6): 224-232.] DOI: 10.11975/j.issn.1002-6819.2018.06.029. [本文引用: 1]
BaiX, ChenJ, ShiP, et al. Landscape urbanization and economic growth in China: Positive feedbacks and sustainability dilemmas Environmental Science and Technology, 2012, 46(1): 132-139. DOI: 10.1021/es202329f. URL [本文引用: 1]
[YangKun, WangGuilin, YangYang, et al. Association between impervious surface and PM2.5 concentrations in Kunming, China Research of Environmental Sciences, 2017, 30(4): 499-509.] DOI: 10.13198/j.issn.1001-6929.2017.01.75. [本文引用: 1]
GongP, LiX, ZhangW, et al. 40-Year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing Science Bulletin, 2019, 64(11): 756-763. DOI: 10.1016/j.scib.2019.04.024. URL [本文引用: 1]
ZhangP, PanJ, XieL, et al. Spatial-temporal evolution and regional differentiation features of urbanization in China from 2003 to 2013 ISPRS International Journal of Geo-Information, 2019, 8(1): 31. DOI: 10.3390/ijgi8010031. URL [本文引用: 1]
[ KuangWenhui, Mapping global impervious surface area and green space within urban environments Science China Earth Sciences, 2019, 49(7) 1151-1168.] DOI: 10.1360/N072018-00164. [本文引用: 1]
YaoR, Wang LC, HuangX, et al. Greening in rural areas increases the surface urban heat island intensity Geophysical Research Letters, 2019, 46(4): 2204-2212. DOI: 10.1029/2018GL081816. URL [本文引用: 1]
ZhongQ, MaJ, ZhaoB, et al. Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000-2016 Remote Sensing of Environment, 2019, 233: 111374. DOI: 10.1016/j.rse.2019.111374. URL [本文引用: 1]
DuJ, FuQ, FangS, et al. Effects of rapid urbanization on vegetation cover in the metropolises of China over the last four decades Ecological Indicators, 2019, 107: 105458. DOI: 10.1016/j.ecolind.2019.105458. URL [本文引用: 2]
SalvatiL, FerraraC. Do changes in vegetation quality precede urban sprawl? Area, 2013, 45(3): 365-375. DOI: 10.1111/area.12047. URL [本文引用: 1]
ManninenS, ForssS, VennS. Management mitigates the impact of urbanization on meadow vegetation Urban Ecosystems, 2010, 13(4): 461-481. DOI: 10.1007/s11252-010-0129-4. URL [本文引用: 1]
陆大道. 京津冀城市群功能定位及协同发展 地理科学进展, 2015, 34(3): 265-270. DOI:10.11820/dlkxjz.2015.03.001 [本文引用: 1] 本文回顾了京津冀大城市群内部各组成部分的经济联系与利益矛盾。阐述了改革开放以来,京津两市和河北省的经济发展特点及已形成的优势。根据各自的特点、优势和符合国家战略利益的原则,提出了京津冀大城市群中北京、天津、河北省的功能定位。 [LuDadao. Function orientation and coordinating development of subregions within the Jing-Jin-Ji Urban Agglomeration Progress in Geography, 2015, 34(3): 265-270.] DOI: 10.11820/dlkxjz.2015.03.001. [本文引用: 1]
KuangW, ZhangS, LiX, et al. A 30-meter resolution dataset of China's urban impervious surface area and green space fractions, 2000-2018 Earth System Science Data, 2021, 13(1): 63-82. DOI: 10.5194/essd-13-63-2021. URL [本文引用: 1]
LiuY, WangY, PengJ, et al. Correlations between urbanization and vegetation degradation across the World's Metropolises using DMSP/OLS nighttime light data Remote Sensing, 2015, 7(2): 2067-2088. DOI: 10.3390/rs70202067. URL [本文引用: 1]
ZhaoS, LiuS, ZhouD, et al. Prevalent vegetation growth enhancement in urban environment Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22): 6313-6318. DOI: 10.1073/pnas.1602312113. [本文引用: 1]
ZhouD, ZhaoS, LiuS, et al. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China's 32 major cities Science of the Total Environment, 2014, 488: 136-145. DOI: 10.1016/j.scitotenv.2014.04.080. [本文引用: 7]
YaoR, CaoJ, WangL, et al. Urbanization effects on vegetation cover in major African cities during 2001-2017 International Journal of Applied Earth Observation and Geoinformation, 2019, 75: 44-53. DOI: 10.1016/j.jag.2018.10.011. URL [本文引用: 1]
裴凤松, 王坤, 刘小平, 等. 长江三角洲城市化地区植被初级生产力的时空变化研究 地球信息科学学报, 2018, 20(6): 862-870. DOI:10.12082/dqxxkx.2018.180100 [本文引用: 2] 城市化过程对植被初级生产具有重要影响。以往研究主要集中于城市用地扩张对植被初级生产力的直接影响分析,而较少关注其间接效果。本文以长江三角洲地区为例,分别从地区尺度和城市尺度分别分析了2000-2013年植被初级生产力的时空变化,探讨了其与气温、降水量及城市建成区绿化覆盖率的关系。研究表明:地区尺度上,2000-2013年长江三角洲植被初级生产力呈现不断增加,其中城市建成区植被初级生产力呈现显著增加的趋势(P [PeiFengsong, WangKun, LiuXiaoping, et al. Temporal-spatial dynamics of vegetation primary productivity in the urbanized areas in the Yangtze River Delta, China Journal of Geo-information Science, 2018, 20(6): 862-870.] DOI: 10.12082/dqxxkx.2018.180100. [本文引用: 2]
[ZhaoWeiqing, LiJingwei, ChuLin, et al. Analysis of spatial and temporal variations in vegetation index and its driving force in Hubei province in the last 10 years Acta Ecologica Sinica, 2019, 39(20): 7722-7736.] DOI: 10.5846/stxb201809011864. [本文引用: 1]
[QiaoXuning, GuYangyang, ChuChangxin, et al. The impact of urban expansion on net primary productivity in the Taihu Lake basin based on nighttime light images Acta Ecologica Sinica, 2018, 38(16): 5883-5893.] DOI: 10.5846/stxb201706051026. [本文引用: 2]
[YanKun, SunRanhao. Assessment of the county-level coordination between urbanization intensity and landscape patterns in the Beijing-Hebei-Tianjin region Ecology and Environmental Sciences, 2018, 27(1): 62-70.] DOI: CNKI: CDMD: 2.1018.108986. [本文引用: 1]
[YanShen, SunRanhao, CaoMingming. An assessment of the synchronization between urbanization intensity and environmental quality in Beijing-Tianjin-Hebei region Chinese Journal of Eclogy, 2018, 37(2): 506-513.] DOI: 10.13292/j.1000-4890.201802.004. [本文引用: 1]
WangZ, LiangL, SunZ, et al. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration Journal of Environmental Management, 2019, 243: 227-239. DOI: 10.1016/j.jenvman.2019.04.088. URL [本文引用: 1]
方创琳. 京津冀城市群协同发展的理论基础与规律性分析 地理科学进展, 2017, 36(1): 15-24. DOI:10.18306/dlkxjz.2017.01.002 [本文引用: 1] 推动京津冀城市群协同发展既是一项国家重大战略,又是一个复杂的长期博弈过程,需要遵循科学理论,尊重科学规律,推动京津冀城市群实现共同繁荣昌盛、共享蓝天白云、共担发展风险、共建世界都会的战略目标。本文从理论上提出了京津冀城市群协同发展的科学理论基础与科学规律。认为推进京津冀城市群协同发展应以协同论、博弈论、耗散结构理论和突变论作为科学理论基础,其中协同论为核心理论。京津冀城市群的协同发展过程是一个博弈、协同、突变、再博弈、再协同、再突变的非线性螺旋式上升过程,每一次博弈—协同—突变过程,都将城市群的协同发展推向更高级协同阶段,并呈现出阶段性规律。具体包括协助阶段、协作阶段、协调阶段、协合阶段、协同阶段、协振阶段、一体化阶段和同城化阶段共8大阶段。进一步分析认为,京津冀城市群协同发展的真正内涵是推动城市群实现规划协同、交通协同、产业协同、城乡协同、市场协同、科技协同、金融协同、信息协同、生态协同和环境协同,建设协同发展共同体。本文成果旨在为京津冀协同发展提供科学基础和理论依据。 [FangChuanglin. Theoretical foundation and patterns of coordinated development of the Beijing-Tianjin-Hebei urban agglomeration Progress in Geography, 2017, 36(1): 15-24.] DOI: 10.18306/dlkxjz.2017.01.002. [本文引用: 1]
[WangJing, ZhouWeiqi, XuKaipeng, et al. Spatiotemporal pattern of vegetation cover and its relationship with urbanization in Beijing-Tianjin-Hebei megaregion from 2000 to 2010 Acta Ecologica Sinica, 2017, 37(21): 7019-7029.] DOI: 10.5846/stxb201608311779. [本文引用: 2]
阎世杰, 王欢, 焦珂伟. 京津冀地区植被时空动态及定量归因 地球信息科学学报, 2019, 21(5): 767-780. DOI:10.12082/dqxxkx.2019.180578 [本文引用: 1] 作为气候变化的敏感指示器,植被的物候、生长、空间分布格局等特征及其动态变化主要取决于气候环境中的水热条件,因此在气候变化背景下,气候-植被关系成为了全球变化研究的前沿和热点问题。本文综合平均温度、降水、水汽压、湿度、日照时数、SPEI等气候因子,坡度、坡向海拔等地形因子及人为活动因子,应用地理探测器方法针对2006-2015年京津冀地区不同季节NDVI、不同地貌类型区、不同植被类型区生长季NDVI的定量归因研究,揭示了过去10年间植被时空分布格局,及植被对气候、非气候因素响应的季节差异与区域差异,以期为生态工程的建设与修复提供参考意义。趋势分析表明:①2006-2015年京津冀地区NDVI呈现增加趋势,但存在显著的空间差异,如山地生长季NDVI的增长速率大于平原、台地、丘陵等地;②基于地理探测器的定量归因结果表明,降水是年尺度上NDVI空间分布的主导因子(解释力39.4%),土地利用与降水的交互作用对NDVI的影响最为明显(q=58.2%);③NDVI对气候因子的响应存在季节性及区域性差异,水汽压是春季NDVI空间分布的主导因子,湿度是夏、秋两季的主导因子,土地利用是冬季的主导因子;④影响因子对生长季NDVI的解释力因不同地貌类型区、不同植被类型区而差异显著。 [YanShijie, WangHuan, JiaoKewei. Spatiotemporal dynamics of NDVI in the Beijing-Tianjin-Hebei region based on MODIS data and quantitative attribution Journal of Geo-information Science, 2019, 21(5): 767-780.] DOI: 10.12082/dqxxkx.2019.180578. [本文引用: 1]
[YangTianrong. Mapping urban impervious surface area with satellite images and its analysis of spatiotemporal pattern in Beijing-Tianjin-Hebei metropolitan area Beijing: Master Dissertation of University of Chinese Academy of Sciences, 2017: 10-11.] [本文引用: 1]
Huete AR, DidanK, MiuraT, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices Remote Sensing of Environment, 2002, 83(1-2): 195-213. DOI: 10.1016/S0034-4257(02)00096-2. URL [本文引用: 1]
DallimerM, TangZ, Bibby PR, et al. Temporal changes in green space in a highly urbanized region Biology Letters, 2011, 7(5): 763-766. DOI: 10.1098/rsbl.2011.0025. PMID:21429910 [本文引用: 1] The majority of the world's population now lives in towns and cities, and urban areas are expanding faster than any other land-use type. In response to this phenomenon, two opposing arguments have emerged: whether cities should 'sprawl' into the wider countryside, or 'densify' through the development of existing urban greenspace. However, these greenspaces are increasingly recognized as being central to the amelioration of urban living conditions, supporting biodiversity conservation and ecosystem service provision. Taking the highly urbanized region of England as a case study, we use data from a variety of sources to investigate the impact of national-level planning policy on temporal patterns in the extent of greenspace in cities. Between 1991 and 2006, greenspace showed a net increase in all but one of 13 cities. However, the majority of this gain occurred prior to 2001, and greenspace has subsequently declined in nine cities. Such a dramatic shift in land use coincides with policy reforms in 2000, which favoured densification. Here, we illustrate the dynamic and policy-responsive nature of urban land use, thereby highlighting the need for a detailed investigation of the trade-offs associated with different mechanisms of urban densification to optimize and secure the diverse benefits associated with greenspaces.
Holben BN. Characteristics of maximum-value composite images from temporal AVHRR data International Journal of Remote Sensing, 1986, 7(11): 1417-1443. DOI: 10.1080/01431168608948945. URL [本文引用: 1]
GongP, LiX, WangJ, et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018 Remote Sensing of Environment, 2020, 236: 111510. DOI: 10.1016/j.rse.2019.111510. URL [本文引用: 1]
[WangGuilin, YangKun, Yangyang. The spatio-temporal variation of PM2.5 pollution and its correlation with the impervious surface expansion China Environmental Science, 2017, 37(7): 2470-2481.] [本文引用: 2]
Imhoff ML, ZhangP, Wolfe RE, et al. Remote Sensing of the urban heat island effect across biomes in the Continental USA Remote Sensing of Environment, 2010, 114(3): 504-513. DOI: 10.1016/j.rse.2009.10.008. URL [本文引用: 1]
ZhaoA, ZhangA, CaoS, et al. Spatiotemporal patterns of water use efficiency in China and responses to multi-scale drought Theoretical and Applied Climatology, 2020, 140: 559-570. DOI: 10.1007/s00704-020-03103-9. URL [本文引用: 1]
ChangS, WangJ, ZhangF, et al. A study of the impacts of urban expansion on vegetation primary productivity levels in the Jing-Jin-Ji region, based on nighttime light data Journal of Cleaner Production, 2020, 263: 121490. DOI: 10.1016/j.jclepro.2020.121490. URL [本文引用: 1]
YaoR, WangL, GuiX, et al. Urbanization effects on vegetation and surface urban heat islands in China's Yangtze River Basin Remote Sensing, 2017, 9(6): 540. DOI: 10.3390/rs9060540. URL [本文引用: 1]
[YueWenze, ZhangJiamin, LiuYong, et al. Measuring urban development intensity based on the integration of multi-source spatial data Acta Ecologica Sinica, 2019, 39(21): 7914-7926.] DOI: 10.5846/stxb201810232296. [本文引用: 1]
[XuDafang, HuYue, LiuYanyan, et al. Empirical study on the coupling coordination between development intensity and resources-and-environment carrying capacity of core cities in Pearl River Delta Journal of Natural Resources, 2020, 35(1): 82-94.] DOI: 10.31497/zrzyxb.20200108. [本文引用: 1]