王婧怡2,
冯玲3,
赵凯1,2,3,,,
王如坤3,
冯丹丹3,
王子珲3,
汤慕贤3
1. 南京信息工程大学 空间天气研究所, 南京 210044
2. 南京信息工程大学 雷丁学院, 南京 210044
3. 南京信息工程大学 数学与统计学院, 南京 210044
基金项目: 国家自然科学基金青年科学基金项目"上行离子源区分布与极尖区三维位形的关系研究"(2017.1-2019.12,No.41604134)资助
详细信息
作者简介: 熊雅婷, 女, 南京信息工程大学数学与统计学院研究生, 研究方向是磁层-电离层耦合.E-mail: yane184676@163.com
通讯作者: 赵凯, 男, 1986年生, 南京信息工程大学数学与统计学院教师, 主要从事电离层建模与预报研究.E-mail: kaizhao@nuist.edu.cn
中图分类号: P353收稿日期:2021-01-25
修回日期:2021-07-15
上线日期:2021-11-10
Statistical relationships between ionospheric ion outflows and solar wind and geomagnetic activity parameters during geomagnetic storms
XIONG YaTing1,3,,WANG JingYi2,
FENG Ling3,
ZHAO Kai1,2,3,,,
WANG RuKun3,
FENG DanDan3,
WANG ZiHui3,
TANG MuXian3
1. Institute of Space Weather, Nanjing University of Information Science and Technology, Nanjing 210044, Chian
2. Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
3. College of Math and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China
More Information
Corresponding author: ZHAO Kai,E-mail:kaizhao@nuist.edu.cn
MSC: P353--> Received Date: 25 January 2021
Revised Date: 15 July 2021
Available Online: 10 November 2021
摘要
摘要:利用FAST卫星ESA仪器第23太阳活动周上升相(1997-1998年)的观测数据,选取20个磁暴期间能量为4~300 eV的离子上行事件,研究不同磁暴相位电离层上行离子的能通量与太阳风、地磁活动以及电子沉降的统计关系.结果表明:(1)在磁暴初相、主相和恢复相离子上行平均能通量为6.08×107eV/(cm2·s·sr·eV)、5.75×107eV/(cm2·s·sr·eV)和3.91×107eV/(cm2·s·sr·eV),初相期间上行离子能通量最大;(2)上行离子能通量与太阳风动压、行星际磁场BZ分量存在相关关系,相关系数分别为0.47和-0.38;(3)在磁暴初相、主相和恢复相上行离子能通量与Sym-H的相关系数分别为0.74、-0.77和-0.54,与Kp的相关系数分别为0.53、0.75和0.65,整体上离子上行与Sym-H指数的相关性好于Kp指数;(4)在磁暴初相、主相和恢复相上行离子能通量和电子数通量的相关系数分别为0.74、0.52和0.32,表明磁暴期间软电子(< 1 keV)沉降可以显著提高电离层离子温度;F区的等离子体摩擦加热和双极电场是离子上行的重要获能机制.本文构建的上行离子能通量与Sym-H和电子数通量的经验关系显著,可用于磁流体模拟研究.
关键词: 离子上行/
太阳风参数/
地磁活动水平/
经验模型
Abstract:Based on the criteria of choosing ion outflow events, we select 20 ion outflow events within the energy range of 4~300 eV during the magnetic storm, using the data from the FAST/ESA instrument between 1997 and 1998, and explore the relationships between the ionospheric ion outflow and the solar wind, the geomagnetic activity, the precipitating electrons. The results show that: (1) The average ion outflow flux is 6.08×107eV/(cm2·s·sr·eV), 5.75×107eV/(cm2·s·sr·eV) and 3.91×107eV/(cm2·s·sr·eV) on the initial phase, the main phase and the recovery phases, respectively. The ion outflow flux reaches the maximum on the initial phase. (2) The correlation coefficients between the ion outflow flux and the solar wind dynamic pressure and the Bz component of the interplanetary magnetic field are 0.47 and -0.38, respectively. (3) The correlation coefficients between the upflow flux and the Sym-H index are 0.74, -0.77 and -0.54 on the initial phase, the main phase and the recovery phase, respectively, and the correlation coefficients with Kp are 0.53, 0.75 and 0.65, respectively. Overall, the correlations between the ion upflow and the Sym-H index are stronger than Kp. (4) The correlation coefficients between the ion upflow and the electron number flux are 0.74, 0.52 and 0.32 on the three phases, respectively. Our conclusions are: 1) the soft electron precipitation (< 1 keV) contributes significantly to the ion temperature increase and the ion frictional heating; 2) the ambipolar electric field is an important energy source for ion outflows. The empirical relationships of the upflowing ions with the Sym-H and the electron number flux are significant in this study, and these empirical models can be used in magnetic fluid simulation studies.
Key words:Ion outflows/
Solar wind parameters/
Geomagnetic activity indices/
Empirical model
PDF全文下载地址:
http://www.geophy.cn/data/article/export-pdf?id=7f81beeb-19a9-4eb5-8b5b-cbf301485b2a