删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于数字岩心的碳酸盐岩孔隙结构对弹性性质的影响研究(上篇):图像处理与弹性模拟

本站小编 Free考研考试/2022-01-03

赵建国1,,
潘建国2,
胡洋铭1,
李劲松3,
闫博鸿1,
李闯2,
孙朗秋1,
刘欣泽1
1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249
2. 中国石油勘探开发研究院西北分院, 兰州 730020
3. 中国石油勘探开发研究院, 北京 102258

基金项目: 国家自然科学基金面上项目"针对碳酸盐岩储层的跨频段(从地震频率-超声频率)岩石物理实验与建模研究"(41574103),"跨频段岩石物理实验与理论驱动的地震速度频散成像研究"(41974120),"基于储层岩石微观结构单元的数字岩石物理建模及弹性模拟研究"(41774130);国家自然科学基金联合基金重点项目"莺琼盆地超高温压跨频段地震岩石物理响应机理研究"(U20B2015);国家重大专项课题"下古生界-前寒武系地球物理勘探关键技术研究"(2016ZX05004-003)联合资助


详细信息
作者简介: 赵建国, 男, 1976年12月生, 现为中国石油大学(北京)地球物理学院教授, 主要从事地震波传播、数字岩心、跨频段地震岩石物理实验技术与理论研究.E-mail:zhaojg@cup.edu.cn; jgzhao761215@aliyun.com
中图分类号: P631

收稿日期:2020-08-29
修回日期:2021-01-02
上线日期:2021-02-10



Digital rock physics-based studies on effect of pore types on elastic properties of carbonate reservoir Part 1: Imaging processing and elastic modelling

ZHAO JianGuo1,,
PAN JianGuo2,
HU YangMing1,
LI JinSong3,
YAN BoHong1,
LI Chuang2,
SUN LangQiu1,
LIU XinZe1
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China
2. Northwest Branch of China Petroleum Exploration and Development Institute, Lanzhou 730020, China
3. China Petroleum Exploration and Development Institute, Beijing 102258, China


MSC: P631

--> Received Date: 29 August 2020
Revised Date: 02 January 2021
Available Online: 10 February 2021


摘要
碳酸盐岩复杂的孔隙结构如何影响其弹性性质一直是地球物理研究的难点问题,在此基础上如何半定量甚至是定量地对碳酸盐岩储层预测,特别是如何有效地获取孔隙结构参数相关的地震属性体一直是油气工业界追求的目标.本研究从数字岩心角度入手,联合测井以及地震数据尝试探究这一问题的解决方案,包括如下几个方面:(1)代表性碳酸盐岩储层样品获取;(2)CT扫描数字岩心数据体获取;(3)数字岩心数据的图像处理;(4)数字岩心数据的静态弹性模拟;(5)数字岩心子数据体的孔隙结构因子提取;(6)孔隙结构因子表征与分类下的弹性性质与孔隙度的定量化量版建立;(7)数字岩心-井-地震联合的孔隙度属性提取;(8)孔隙结构因子的地震属性体获取.
本研究分为两篇系列文章上篇与下篇,上篇主要阐述如上提出的(1)-(4)方面,重点在于针对碳酸盐岩二值化图像处理的流程建立与验证,以及数字岩心静态弹性模拟的理论方面,这两方面是基于数字岩心获得精确的碳酸盐岩弹性性质模拟结果的关键所在;下篇主要阐述利用数字岩心数据获得孔隙结构因子的思路、理论与流程,以及为碳酸盐岩储层预测为目标而获得孔隙结构因子的地震属性体的实际应用方面.由于两篇文章共享数字岩心数据,同时所涉及的研究思路与流程形成一个有机整体,因此写成两篇系列文章而非两篇独立文章.本文为两篇系列文章的第一篇:上篇.
碳酸盐岩/
孔隙结构类型/
弹性性质/
数字岩心/
图像处理/
二值化

How the complex pore structure of carbonate rock affects the elastic properties of carbonate rock has always been a difficult problem in the research of geophysics. How to make semi-quantitative or even quantitative predictions of carbonate reservoirs on this basis, and in particular how to effectively obtain seismic attribute volume related to the pore structure parameters, have been pursued by the oil and gas industry. This study attempts to explore the solution to this problem from the perspective of digital cores, combined with well logging and seismic data, including:(1) Acquisition of representative carbonate reservoir samples; (2) Acquisition of CT scan digital core data volume; (3) Image processing of digital core data; (4) Static elastic simulation of digital core data; (5) Pore structure factor extraction of digital core sub-block data bodies; (6) Quantification of elastic properties and porosity under pore structure factor characterization and classification to establish a quantitative measurement board; (7) Extraction of porosity properties of digital core-well-seismic associations; (8) Acquisition of seismic property bodies for pore structure factors.
This study is divided into two article series Part 1 and Part 2. Part 1 focuses on aspects (1)-(4) as presented above, with an emphasis on the establishment of processes and validation of binarized image processing of carbonate rocks and the theoretical aspects of static elastic simulations of digital cores, both of which are key to obtaining accurate simulation results of the elastic properties of carbonate rocks based on digital cores. Part 2 focuses on the idea, theory and process of using digital core data to obtain pore structure factors, as well as the practical application of seismic attribute bodies that obtains pore structure factors for the purpose of carbonate reservoir prediction. This article is the first in a two-part series:Part 1.
Carbonate/
Pore structure type/
Elastic properties/
Digital core/
Image processing/
Binarization



PDF全文下载地址:

http://www.geophy.cn/data/article/export-pdf?id=608009fbc23e67607ae103f9
相关话题/数字 结构 地震 数据 岩石