删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

滇西三江构造带电性结构特征——以福贡-巧家剖面为例

本站小编 Free考研考试/2022-01-03

罗愫1,2,,
于常青2,,,
张刚3,
李德伟4,
瞿辰2,
张慧民2,5,
田镇瑜2,5,
皇健4
1. 中国地质大学(武汉)地球物理与空间信息学院, 武汉 430074
2. 中国地质科学院地质研究所, 北京 100037
3. 西南科技大学环境资源学院, 四川绵阳 621010
4. 成都理工大学, 成都 610059
5. 中国地质大学(北京)地球物理与信息技术学院, 北京 100083

基金项目: 国家重点研发计划专题"深层地球物理信息与识别技术(2016YFC060110602)"和中国地质调查局项目(1212011121273,DD2016002)联合资助


详细信息
作者简介: 罗愫, 女, 1989年生, 博士生, 主要从事构造地球物理研究.E-mail:luosu24@126.com
通讯作者: 于常青, 男, 1962年生, 博士, 研究员, 主要从事勘探地球物理和深部地球物理研究.E-mail:geoyucq@qq.com
中图分类号: P541;P631

收稿日期:2019-05-15
修回日期:2020-01-06
上线日期:2020-03-05



Deep electrical resistivity structure of the Sanjiang Area, western Yunnan: An example of the Fugong-Qiaojia profile

LUO Su1,2,,
YU ChangQing2,,,
ZHANG Gang3,
LI DeWei4,
QU Chen2,
ZHANG HuiMin2,5,
TIAN ZhenYu2,5,
HUANG Jian4
1. School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China
2. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
3. School of Environment and Resource, Southwest University of Science and Technology, Sichuan Mianyang 621020, China
4. Chengdu University of Technology, Chengdu 610059, China
5. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China


More Information
Corresponding author: YU ChangQing,E-mail:geoyucq@qq.com
MSC: P541;P631

--> Received Date: 15 May 2019
Revised Date: 06 January 2020
Available Online: 05 March 2020


摘要
为查明滇西三江构造带及邻区复杂的构造特征,并揭示该区深部电性结构,沿福贡—巧家布设了一条长约410 km的大地电磁剖面.共观测到61个物理点,其中宽频大地电磁测点41个,长周期大地电磁测点20个.通过对采集到的数据进行一系列的处理、反演,得到了沿剖面的壳幔电性结构模型.并结合研究区内区域地质资料及其他地球物理资料,对剖面所经过的各个主要地质构造单元及主要断裂带进行了综合解释.电性结构模型揭示沿剖面地壳电性层次复杂,深部电性结构由西往东呈分块展布,横向变化大,壳内广泛发育低阻异常.在中甸构造带(香格里拉地块)和盐源—永胜构造带深部壳幔存在大规模低阻异常,这可能与地下局部熔融体和地热流有关;康滇构造带壳幔存在大规模高阻异常,表明地壳中曾经有地幔物质侵入;在大凉山构造带地下10~50 km深处存在一呈横向"半月形"展布的低阻体,电阻率值不满10 Ωm,结合地质资料与前人的研究成果,推测该低阻体成因应与青藏高原东南缘"地壳管道流"有一定关联.
滇西三江地区/
中上地壳/
大地电磁/
电阻率/
电性结构特征

In order to explore the complicated structural features of the Sanjiang tectonic belt and its adjacent areas and reveal the deep electrical resistivity structure, we deployed a 410 km-long Magnetotelluric (MT) profile along the Fugong-Qiaojia area. A total of 61 physical points were observed, including 41 broadband MT sounding stations and 20 long-period magnetotelluric sounding stations. After processing, two-dimensional inversion of the observed field data yielded a crust and mantle electrical resistivity structure model along the profile. Combined with regional geological data and other geophysical data in the study area, the main tectonic units and fault zones passing through the profile are comprehensively interpreted. The resistivity model reveals that the crust and mantle electrical resistivity structure in the study area is transversely partitioned in the east-west direction. From east to west, the electrical anomaly thickness and burial depth are different. In the Zhongdian tectonic belt, there are large-scale low-resistivity zones in the middle and upper crust, which may be related to partial melting and heat flow. High-resistivity bodies exist in the middle and upper crust of the Kangdian tectonic belt, indicating that there are mantle materials intruding into the crust. There is a low-resistance body at depths of 10~50 km in the Daliang Shan tectonic belt, which looks like half-lunar shaped, and the resistivity value is less than 10 Ωm. Based on the geological data and previous research results, it is speculated that the cause of the low-resistance body could be related to the "crustal channel flow" on the southeast margin of the Tibetan Plateau.
Sanjiang area in western Yunnan/
Upper and middle crust/
Electrical resistivity/
Magnetotelluric sounding/
Electrical resistivity structure



PDF全文下载地址:

http://www.geophy.cn/data/article/export-pdf?id=dqwlxb_15376
相关话题/地球物理 结构 地质 北京 中国地质大学