余晔1,2,
李万莉3,
李亚珺1,2
1. 中国科学院西北生态环境资源研究院, 寒旱区陆面过程与气候变化重点实验室, 兰州 730000
2. 中国科学院平凉陆面过程与灾害天气观测研究站, 甘肃平凉 744015
3. 中国气象局气象干部培训学院, 北京 100081
基金项目: 国家重点基础研究计划(2014CB441404), 中国科学院"西部之光"人才培养引进计划及国家自然科学基金(41575014, 41405007, 41805003)共同资助
详细信息
作者简介: 李江林, 男, 1983年生, 工程师, 从事雷暴云电荷结构数值模拟工作.E-mail:lijl@lzb.ac.cn
中图分类号: P432 收稿日期:2018-01-03
修回日期:2018-08-31
上线日期:2019-07-05
Numerical simulation of thunderstorm charge structure in eastern Qinghai using different non-inductive and inductive schemes
LI JiangLin1,2,,YU Ye1,2,
LI WanLi3,
LI YaJun1,2
1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environmental Resources, Chinese Academy of Science, Lanzhou 730000, China
2. Pingliang Land Surface Process & Severe Weather Research Station, Chinese Academy of Sciences, Pingliang Gansu 744015, China
3. Meteorological Administration Training Center, Beijing 100081, China
MSC: P432
--> Received Date: 03 January 2018
Revised Date: 31 August 2018
Available Online: 05 July 2019
摘要
摘要:本研究利用加入起电、放电参数化方案的数值模式(Weather Research and Forecasting Model(Version 3.7.1),WRF3.7.1_ELEC),通过设计五组不同非感应起电及感应起电参数化方案敏感性试验,对发生在青藏高原东北部青海大通地区的一次雷暴过程进行模拟研究,对比分析了不同非感应起电机制及感应起电机制对雷暴云电荷结构的影响.结果表明:在雷暴云发展旺盛阶段,Saunders(S91)、Riming Rate(RR)、和Saunders和Peck(SP98)三种非感应起电方案模拟的雷暴云最低层均为负电荷区,而混合方案(Brooks and SP98,BSP)模拟的雷暴云最低层为正电荷区,主电荷区自下而上为"+-+-"排列的四层电荷结构.与甚高频辐射源定位法推算的结果对比,BSP方案模拟的本次高原雷暴云电荷结构更接近实际情况;几种不同非感应起电方案模拟的主电荷区外围与主电荷区电荷结构不同,说明在雷暴发展的不同阶段雷暴云的电荷结构是不同的;几种非感应起电方案模拟的电荷结构不尽相同,主要是由于霰、冰和雪粒子在不同高度所带电荷的极性及电量的大小不同,霰粒子的电荷密度对低层的影响较大,冰粒子和雪粒子的电荷密度对中上层的影响较大;加入感应起电机制后,雷暴云电荷结构分布几乎没有变化,但能使雷暴云发展旺盛阶段低层和中层的正负电荷区电荷密度有所加强.
关键词: 雷暴云/
非感应起电/
感应起电/
电荷结构/
数值模拟
Abstract:A thunderstorm event that occurred at Datong of Qinghai in the northeastern Tibetan Plateau was simulated using four different non-inductive and one inductive electrification schemes on the WRF3.7.1_ELEC numerical model. The results show that at the mature stage of the thunderstorm, the S91, RR and SP98 non-inductive schemes all simulated a negative charge region at the bottom of the thundercloud, while the BSP non-inductive scheme produced a four-layered charge structure with a lower positive charge region which was consistent with that deduced from very high frequency (VHF) radiation source data. The four non-inductive electrification schemes produced different charge structures between the main charged area and the periphery charged area indicating the charge structures were different at different stages of the storm development. The differences in charge structures produced by different non-inductive schemes are related to the differences in the charge polarity and amount among graupel, ice and snow particles at different heights. While the charge density of graupel has a greater influence on the low cloud layer, the charge density of ice and snow has a greater influence on the high cloud layer. The including of inductive electrification scheme increased the positive and the negative charge density in the lower and middle areas, respectively in the mature phase of the thunderstorm, but retained its overall charge structure.
Key words:Thunderstorm/
Non-inductive charge/
Inductive charge/
Charge structure/
Numerical simulation
PDF全文下载地址:
http://www.geophy.cn/data/article/export-pdf?id=dqwlxb_15043