摘要/Abstract
摘要: 初至波拾取是地震资料处理中一项基础而重要的工作.为解决我国西部沙漠、黄土塬、戈壁等地区地震资料信噪比低,致使初至波拾取准确率不高的难题.本文创新提出一种基于图像分割技术——UNet++神经网络应用于初至波智能拾取.输入原始地震数据及少量初至时间的标签数据进行监督学习,并建立UNet++ 模型,应用西部某工区地震数据测试,实验证明,UNet++模型性能稳定,炸药震源初至波拾取准确率达到98%,可控震源初至波拾取准确率达到98%.此外,本方法与商业软件、U-net网络的初至拾取对比表明,UNet++优势明显,具有准确率高,抗噪能力强,性能稳定、高效等特点.
PDF全文下载地址:
http://www.progeophys.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=9869