摘要/Abstract
摘要: 针对传统雷达干涉测量技术(D-InSAR)易受大气相位延迟和失相关的影响以及传统BP算法依赖于初始权值和阈值问题.本文采用了(PS-InSAR)技术对矿区地表沉降进行了监测,并提出采用遗传算法(GA)对神经网络(BP)算法的初始权值和阈值进行筛选.首先利用PS-InSAR技术获取矿区地表沉降范围和沉降值,然后将其部分结果作为遗传神经网络(GA-BP)算法的训练样本建立预测模型参数.选取宿州市矿区19景Sentinel-1A雷达数据进行实验分析,结果表明,PS-InSAR技术能够很好监测矿区地表沉降,最大沉降速率为45 mm/a.分别取训练样本数为1000、2000、3000和4000利用GA-BP算法对矿区地表沉降进行预测,得到最大残差分别为6.8 mm、0.44 mm、0.36 mm、0.28 mm;均方误差分别为3.85 mm、3.26 mm、2.98 mm、1.61 mm,表明本文提出的GA-BP算法能有效预测矿区地表沉降,并且在训练样本数量较多时预测效果和预测性能较好.
PDF全文下载地址:
http://www.progeophys.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=9572