摘要/Abstract
摘要: 本文从长短时间窗(LTA-STA)得到启发模拟实时波段类型识别.事件为首都圈及其附近的186个天然地震和174个人工爆破事件,用于抽取特征的波形信号为各观测台站波形3分量中的垂直分量波形,在各个事件的所有观测台站的垂直分量波形中,通过滑动窗口按同一准则去除被噪声淹没的部分台站波形,只选择留下未被噪声淹没的台站波形.对连续波形,使用长窗口沿波形时间轴进行滑动,每滑动一个步长就进行一次滤波处理,以滤除噪声,当滤波后的长窗口波形满足阈值条件,此时停止长窗口滑动.然后在滤波前的长时窗口中选取短时间窗口波形,提取特征,使用支持向量机进行分类训练和识别,最后以事件为单位进行识别,事件划分按以训练集为300个事件,测试集为60个事件进行划分,进行了训练和识别.然后又将训练集按照训练集240个事件,测试集120个事件进行划分.得到较好的识别结果.本文结果说明了波形类型实时识别的可行性,也可为后续实时波形检测和识别提供借鉴.
PDF全文下载地址:
http://www.progeophys.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=9292