摘要/Abstract
摘要: 随着当今勘探难度的增加,地震数据处理的精度也逐步提升,因此,对数据的完整度也提出了更高的要求.本文基于形态分量分析,采用离散余弦变换(DCT)字典和Shearlet字典的组合形式用于地震数据恢复重建,相比于其他稀疏变换具有更高的稀疏性、更强的稀疏表示能力.在MCA框架下,首先通过对地震数据中的局部奇异分量与平滑状分量分别采用DCT字典和Shearlet字典进行稀疏表示;而后,在重建的算法中加入指数阈值模型和指数阈值函数的块坐标松弛(BCR)算法来得到各个分量;最后,将不同字典得到的结果合并得到最终重建结果.通过合成数据实验和实际数据实验均表明,该方法能够有效地重建缺失地震数据,并且重建精度高于Curvelet字典与DCT字典组合、单一Shearlet字典、Shearlet字典与Curvelet字典组合.同时,通过对含噪数据以及不同信噪比的数据处理结果均验证了该方法具有较强的适应性.
PDF全文下载地址:
http://www.progeophys.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=9004