Molecular Plant
Abstract
Regulation of seed size is a key strategy for improving crop yield, and is also a basic biological question, but how plants determine their seed size remains elusive. Here we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice. WG1, which encodes a glutaredoxin protein, promotes grain growth by increasing cell proliferation. WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1, indicating that WG1 may act as adaptor protein to recruit the transcriptional co-repressor. OsbZIP47 restricts grain growth by decreasing cell proliferation. Further results reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation. Genetic analyses support thatGW2, WG1andOsbZIP47function in a common pathway to control grain growth. Thus, our findings reveal a genetic and molecular framework for the GW2-WG1-OsbZIP47 regulatory module-mediated control of grain size and weight, opening new perspectives for using this regulatory pathway for improvement of seed size and weight in crops.
论文编号: | DOI:10.1016/j.molp.2021.04.011 |
论文题目: | The GW2-WG1-OsbZIP47 Pathway Controls Grain Size and Weight in Rice |
英文论文题目: | The GW2-WG1-OsbZIP47 Pathway Controls Grain Size and Weight in Rice |
第一作者: | Jianqin Hao, Dekai Wang, Yingbao Wu, Ke Huang, Penggen Duan, Na Li, Ran Xu, Dali Zeng, Guojun Dong, Baolan Zhang, Limin Zhang, Dirk Inzé, Qian Qian, Yunhai Li |
英文第一作者: | Jianqin Hao, Dekai Wang, Yingbao Wu, Ke Huang, Penggen Duan, Na Li, Ran Xu, Dali Zeng, Guojun Dong, Baolan Zhang, Limin Zhang, Dirk Inzé, Qian Qian, Yunhai Li |
联系作者: | |
英文联系作者: | |
外单位作者单位: | |
英文外单位作者单位: | |
发表年度: | 2021-05-11 |
卷: | |
期: | |
页码: | |
摘要: | Regulation of seed size is a key strategy for improving crop yield, and is also a basic biological question, but how plants determine their seed size remains elusive. Here we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice. WG1, which encodes a glutaredoxin protein, promotes grain growth by increasing cell proliferation. WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1, indicating that WG1 may act as adaptor protein to recruit the transcriptional co-repressor. OsbZIP47 restricts grain growth by decreasing cell proliferation. Further results reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation. Genetic analyses support thatGW2, WG1andOsbZIP47function in a common pathway to control grain growth. Thus, our findings reveal a genetic and molecular framework for the GW2-WG1-OsbZIP47 regulatory module-mediated control of grain size and weight, opening new perspectives for using this regulatory pathway for improvement of seed size and weight in crops. |
英文摘要: | Regulation of seed size is a key strategy for improving crop yield, and is also a basic biological question, but how plants determine their seed size remains elusive. Here we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice. WG1, which encodes a glutaredoxin protein, promotes grain growth by increasing cell proliferation. WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1, indicating that WG1 may act as adaptor protein to recruit the transcriptional co-repressor. OsbZIP47 restricts grain growth by decreasing cell proliferation. Further results reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation. Genetic analyses support thatGW2, WG1andOsbZIP47function in a common pathway to control grain growth. Thus, our findings reveal a genetic and molecular framework for the GW2-WG1-OsbZIP47 regulatory module-mediated control of grain size and weight, opening new perspectives for using this regulatory pathway for improvement of seed size and weight in crops. |
刊物名称: | Molecular Plant |
英文刊物名称: | Molecular Plant |
论文全文: | |
英文论文全文: | |
全文链接: | |
其它备注: | Jianqin Hao, Dekai Wang, Yingbao Wu, Ke Huang, Penggen Duan, Na Li, Ran Xu, Dali Zeng, Guojun Dong, Baolan Zhang, Limin Zhang, Dirk Inzé, Qian Qian, Yunhai Li. The GW2-WG1-OsbZIP47 Pathway Controls Grain Size and Weight in Rice. Molecular Plant. DOI:10.1016/j.molp.2021.04.011 |
英文其它备注: | |
学科: | |
英文学科: | |
影响因子: | |
第一作者所在部门: | |
英文第一作者所在部门: | |
论文出处: | |
英文论文出处: | |
论文类别: | |
英文论文类别: | |
参与作者: | |
英文参与作者: |