删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Structure and Activity of SLAC1 Channels for Stomatal Signaling in Leaves

本站小编 Free考研考试/2022-01-01

Ya-nan Deng, Hamdy Kashtoh, Quan Wang, Guang-xiao Zhen, Qi-yu Li, Ling-hui Tang,Hai-long Gao, Chun-rui Zhang, Li Qin, Min Su, Fei Li, Xia-he Huang, Ying-chun Wang, Qi Xie,Oliver B. Clarke, Wayne A. Hendrickson, and Yu-hang Chen

PNAS


Abstract
Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-? resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.


论文编号: DOI:10.1073/pnas.2015151118
论文题目: Structure and Activity of SLAC1 Channels for Stomatal Signaling in Leaves
英文论文题目: Structure and Activity of SLAC1 Channels for Stomatal Signaling in Leaves
第一作者: Ya-nan Deng, Hamdy Kashtoh, Quan Wang, Guang-xiao Zhen, Qi-yu Li, Ling-hui Tang,Hai-long Gao, Chun-rui Zhang, Li Qin, Min Su, Fei Li, Xia-he Huang, Ying-chun Wang, Qi Xie,Oliver B. Clarke, Wayne A. Hendrickson, and Yu-hang Chen
英文第一作者: Ya-nan Deng, Hamdy Kashtoh, Quan Wang, Guang-xiao Zhen, Qi-yu Li, Ling-hui Tang,Hai-long Gao, Chun-rui Zhang, Li Qin, Min Su, Fei Li, Xia-he Huang, Ying-chun Wang, Qi Xie,Oliver B. Clarke, Wayne A. Hendrickson, and Yu-hang Chen
联系作者:
英文联系作者:
外单位作者单位:
英文外单位作者单位:
发表年度: 2021-04-30
卷:
期:
页码:
摘要: Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-? resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.
英文摘要: Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-? resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.
刊物名称: PNAS
英文刊物名称: PNAS
论文全文:
英文论文全文:
全文链接:
其它备注: Ya-nan Deng, Hamdy Kashtoh, Quan Wang, Guang-xiao Zhen, Qi-yu Li, Ling-hui Tang,Hai-long Gao, Chun-rui Zhang, Li Qin, Min Su, Fei Li, Xia-he Huang, Ying-chun Wang, Qi Xie,Oliver B. Clarke, Wayne A. Hendrickson, and Yu-hang Chen. Structure and Activity of SLAC1 Channels for Stomatal Signaling in Leaves. PNAS. DOI :10.1073/pnas.2015151118
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者:
英文参与作者:
相关话题/英文 论文 学科 作者 全文