Nature Chemical Biology
Abstract
How aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear. Here, we reveal that developmentally produced H2O2 in plant shoot apical meristem (SAM) triggers reversible protein phase separation of TERMINATING FLOWER (TMF), a transcription factor that times flowering transition in the tomato by repressing pre-maturation of SAM. Cysteine residues within TMF sense cellular redox to form disulfide bonds that concatenate multiple TMF molecules and elevate the amount of intrinsically disordered regions to drive phase separation. Oxidation triggered phase separation enables TMF to bind and sequester the promoter of a floral identity gene ANANTHA to repress its expression. The reversible transcriptional condensation via redox-regulated phase separation endows aerobic organisms with the flexibility of gene control in dealing with developmental cues.
论文编号: | DOI:10.1038/s41589-021-00739-0 |
论文题目: | ROS Regulated Reversible Protein Phase Separation Synchronizes Plant Flowering |
英文论文题目: | ROS Regulated Reversible Protein Phase Separation Synchronizes Plant Flowering |
第一作者: | Xiaozhen Huang, Shudong Chen, Weiping Li, Lingli Tang, Yueqin Zhang, Ning Yang, Yupan Zou, Xiawan Zhai, Nan Xiao, Wei Liu, Pilong Li and Cao Xu |
英文第一作者: | Xiaozhen Huang, Shudong Chen, Weiping Li, Lingli Tang, Yueqin Zhang, Ning Yang, Yupan Zou, Xiawan Zhai, Nan Xiao, Wei Liu, Pilong Li and Cao Xu |
联系作者: | |
英文联系作者: | |
外单位作者单位: | |
英文外单位作者单位: | |
发表年度: | 2021-02-26 |
卷: | |
期: | |
页码: | |
摘要: | How aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear. Here, we reveal that developmentally produced H2O2 in plant shoot apical meristem (SAM) triggers reversible protein phase separation of TERMINATING FLOWER (TMF), a transcription factor that times flowering transition in the tomato by repressing pre-maturation of SAM. Cysteine residues within TMF sense cellular redox to form disulfide bonds that concatenate multiple TMF molecules and elevate the amount of intrinsically disordered regions to drive phase separation. Oxidation triggered phase separation enables TMF to bind and sequester the promoter of a floral identity gene ANANTHA to repress its expression. The reversible transcriptional condensation via redox-regulated phase separation endows aerobic organisms with the flexibility of gene control in dealing with developmental cues. |
英文摘要: | How aerobic organisms exploit inevitably generated but potentially dangerous reactive oxygen species (ROS) to benefit normal life is a fundamental biological question. Locally accumulated ROS have been reported to prime stem cell differentiation. However, the underlying molecular mechanism is unclear. Here, we reveal that developmentally produced H2O2 in plant shoot apical meristem (SAM) triggers reversible protein phase separation of TERMINATING FLOWER (TMF), a transcription factor that times flowering transition in the tomato by repressing pre-maturation of SAM. Cysteine residues within TMF sense cellular redox to form disulfide bonds that concatenate multiple TMF molecules and elevate the amount of intrinsically disordered regions to drive phase separation. Oxidation triggered phase separation enables TMF to bind and sequester the promoter of a floral identity gene ANANTHA to repress its expression. The reversible transcriptional condensation via redox-regulated phase separation endows aerobic organisms with the flexibility of gene control in dealing with developmental cues. |
刊物名称: | Nature Chemical Biology |
英文刊物名称: | Nature Chemical Biology |
论文全文: | |
英文论文全文: | |
全文链接: | |
其它备注: | ROS Regulated Reversible Protein Phase Separation Synchronizes Plant Flowering. Xiaozhen Huang, Shudong Chen, Weiping Li, Lingli Tang, Yueqin Zhang, Ning Yang, Yupan Zou, Xiawan Zhai, Nan Xiao, Wei Liu, Pilong Li and Cao Xu. Nature Chemical Biology. DOI:10.1038/s41589-021-00739-0 |
英文其它备注: | |
学科: | |
英文学科: | |
影响因子: | |
第一作者所在部门: | |
英文第一作者所在部门: | |
论文出处: | |
英文论文出处: | |
论文类别: | |
英文论文类别: | |
参与作者: | |
英文参与作者: |