删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

BLOS1 Mediates Kinesin Switch during Endosomal Recycling of LDL Receptor

本站小编 Free考研考试/2022-01-01

Chang Zhang, Chanjuan Hao, Guanghou Shui, Wei Li

eLIFE


Abstract
Low-density lipoprotein receptor (LDLR) in hepatocytes plays a key role in normal clearance of circulating LDL and in whole body cholesterol homeostasis. The trafficking of LDLR is highly regulated in clathrin-dependent endocytosis, endosomal recycling and lysosomal degradation. Current studies focus on its endocytosis and degradation. However, the detailed molecular and cellular mechanisms underlying its endosomal recycling are largely unknown. We found that BLOS1, a shared subunit of BLOC-1 and BORC, is involved in LDLR endosomal recycling. Loss of BLOS1 leads to less membrane LDLR and impairs LDL clearance from plasma in hepatocyte-specific BLOS1 knockout mice. BLOS1 interacts with kinesin-3 motor KIF13A, and BLOS1 acts as a new adaptor for kinesin-2 motor KIF3 to coordinate kinesin-3 and kinesin-2 during the long-range transport of recycling endosomes (REs) to plasma membrane along microtubule tracks to overcome hurdles at microtubule intersections. This provides new insights into RE's anterograde transport and the pathogenesis of dyslipidemia.


论文编号: DOI:10.7554/eLife.58069
论文题目: BLOS1 Mediates Kinesin Switch during Endosomal Recycling of LDL Receptor
英文论文题目: BLOS1 Mediates Kinesin Switch during Endosomal Recycling of LDL Receptor
第一作者: Chang Zhang, Chanjuan Hao, Guanghou Shui, Wei Li
英文第一作者: Chang Zhang, Chanjuan Hao, Guanghou Shui, Wei Li
联系作者:
英文联系作者:
外单位作者单位:
英文外单位作者单位:
发表年度: 2020-11-16
卷:
期:
页码:
摘要: Low-density lipoprotein receptor (LDLR) in hepatocytes plays a key role in normal clearance of circulating LDL and in whole body cholesterol homeostasis. The trafficking of LDLR is highly regulated in clathrin-dependent endocytosis, endosomal recycling and lysosomal degradation. Current studies focus on its endocytosis and degradation. However, the detailed molecular and cellular mechanisms underlying its endosomal recycling are largely unknown. We found that BLOS1, a shared subunit of BLOC-1 and BORC, is involved in LDLR endosomal recycling. Loss of BLOS1 leads to less membrane LDLR and impairs LDL clearance from plasma in hepatocyte-specific BLOS1 knockout mice. BLOS1 interacts with kinesin-3 motor KIF13A, and BLOS1 acts as a new adaptor for kinesin-2 motor KIF3 to coordinate kinesin-3 and kinesin-2 during the long-range transport of recycling endosomes (REs) to plasma membrane along microtubule tracks to overcome hurdles at microtubule intersections. This provides new insights into RE's anterograde transport and the pathogenesis of dyslipidemia.
英文摘要: Low-density lipoprotein receptor (LDLR) in hepatocytes plays a key role in normal clearance of circulating LDL and in whole body cholesterol homeostasis. The trafficking of LDLR is highly regulated in clathrin-dependent endocytosis, endosomal recycling and lysosomal degradation. Current studies focus on its endocytosis and degradation. However, the detailed molecular and cellular mechanisms underlying its endosomal recycling are largely unknown. We found that BLOS1, a shared subunit of BLOC-1 and BORC, is involved in LDLR endosomal recycling. Loss of BLOS1 leads to less membrane LDLR and impairs LDL clearance from plasma in hepatocyte-specific BLOS1 knockout mice. BLOS1 interacts with kinesin-3 motor KIF13A, and BLOS1 acts as a new adaptor for kinesin-2 motor KIF3 to coordinate kinesin-3 and kinesin-2 during the long-range transport of recycling endosomes (REs) to plasma membrane along microtubule tracks to overcome hurdles at microtubule intersections. This provides new insights into RE's anterograde transport and the pathogenesis of dyslipidemia.
刊物名称: eLIFE
英文刊物名称: eLIFE
论文全文:
英文论文全文:
全文链接:
其它备注: Chang Zhang, Chanjuan Hao, Guanghou Shui, Wei Li. BLOS1 Mediates Kinesin Switch during Endosomal Recycling of LDL Receptor. eLIFE. DOI:10.7554/eLife.58069
英文其它备注:
学科:
英文学科:
影响因子:
第一作者所在部门:
英文第一作者所在部门:
论文出处:
英文论文出处:
论文类别:
英文论文类别:
参与作者:
英文参与作者:
相关话题/英文 论文 学科 作者 全文