删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
中国科学院遗传与发育生物学研究所导师教师师资介绍简介-李传友
本站小编 Free考研考试/2020-05-26
李传友
职称:研究员
职务:
联系电话:86-(O);86-(L)
传真:86-
附件:
E-mail:
实验室主页:
研究方向:植物激素茉莉酸的生理功能及其作用机理
李传友,博士,研究员,博士生导师
1991年山东农业大学学士;1994年山东农业大学硕士;1999年中国科学院遗传研究所博士。1999年至2003年,MSU-DOE Plant Research Laboratory博士后。2003年中国科学院“****”入选者,2004年国家****科学基金获得者。现担任国家重大科学研究计划项目首席科学家。任《Molecular Plant》, 《Plant Molecular Biology》Associate Editor, 《遗传》、《植物学报》编委。
李传友博士的主要研究方向是植物激素茉莉酸的生理功能及其作用机理。
第十届国际茄科植物生物学大会 会议网站: http://www.sol2013.org
1.以番茄为模式系统研究植物对昆虫抗性反应的分子机理
以番茄为模式系统,以经典的蛋白酶抑制剂为抗性标记基因,通过筛选抗性缺失突变体鉴定并分离植物对昆虫的抗性反应信号传导途径中的重要基因。目前已筛选到的番茄突变体主要分为两类:一类对系统素的识别发生了缺陷;另一类是JA的生物合成或信号传导发生了缺陷。采用图位克隆的方法成功地从番茄基因组中分离了控制JA合成的两个基因Spr2和JL1,目前正在进行生物学功能的研究。以茉莉酸合成突变体spr2和茉莉酸识别突变体jai1为材料,采用嫁接实验证明,在植物系统性抗性反应中进行长距离运输的信号分子是JA而不是传统认为的系统素,系统素的作用在于调控JA的生物合成。这是对本领域现有工作模型的重要修正。过量表达系统素前体基因(Prosystemin)的转基因番茄(35S::PS)组成型地表达高水平的抗性相关蛋白,表明在35S::PS植物中受伤反应始终处于开启的状态。目前我们正在以35S::PS为基础材料大规模筛选系统素/茉莉酸途径的抑制子突变。对更多突变体的表型分析、相应基因的分离和功能研究将会为最终阐明植物对昆虫抗性反应的遗传机理奠定基础。在此基础上通过对抗性信号传导途径中关键基因的遗传工程操作提高植物对昆虫的抗性。该项研究的长远目标是建立一种依靠植物自身的抗性因而是对环境友好的、可持续的控制农业害虫的策略。
2.番茄3号染色体测序及功能基因组学研究
作为重要的模式经济作物,番茄基因组较小,遗传学基础雄厚,并且具有许多拟南芥、水稻等模式植物所不具备的生物学现象(如果实的发育、成熟过程等),其功能基因组学的研究将为其它蔬菜、水果等重要经济作物的同类研究提供理论和方法上的直接借鉴。我们和其他科学家一道完成了对栽培番茄基因组的精细序列分析。同时从番茄突变体材料入手,克隆重要经济性状相关基因并进行功能研究。
3.以拟南芥为模式研究茉莉酸与生长素互作调控植物生长发育和抗逆反应的分子机制
茉莉酸在植物的生长发育和抗逆反应两个方面都具有重要调控作用。我们的研究表明茉莉酸的这些生理功能是通过与其它植物激素的相互作用实现的。我们以拟南芥根系发育为模式研究茉莉酸与生长素互作协调植物的生长发育和抗性反应的分子基础。
KEY PUBLICATIONS (*Corresponding author):
1. Wang H, Li S, Li Y, Xu Y, Wang Y, Zhang R, Sun W, Chen Q, Wang X, Li C*, and Zhao J*. (2019). MED25 connects enhancer-promoter looping and MYC2-dependent activation of jasmonate signaling. Nat. Plants 5: 616–625. (Recommended in F1000 Prime as being of special significance)
2. Liu Y, Du M, Deng L, Shen J, Fang M, Chen Q, Lu Y, Wang Q*, Li C*, and Zhai Q*. (2019). MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. Plant Cell 31: 106–127.
Highlighted with an In Brief article in Plant Cell, https://doi.org/10.1105/tpc.19.00004;
Highlighted with a Spotlight article inTrends Plant Sci., https://doi.org/10.1016/j.tplants.2019.06.001.
3. You Y, Zhai Q*, An C, and Li C*. (2019). LEUNIG_HOMOLOG mediates jasmonate-dependent transcriptional activation in cooperation with the coactivators HAC1 and MED25. Plant Cell DOI: https://doi.org/10.1105/tpc.19.00115.
4. Zhai Q, and Li C*. (2019). The plant Mediator complex and its role in jasmonate signaling. J. Exp. Bot. 70: 3415–3424.
5. Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, Li C, and Scheres B*. (2019). A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177: 942–956.
6. Zhang P, Wei J, Zhao C, Zhang Y, Li C, Liu S, Dickee M, Yu X, and Turlings TCJ*. (2019). Airborne host–plant manipulation by whiteflies via an inducible blend of plant volatiles. Proc. Natl. Acad. Sci. USA. 116: 7387–7396.
7. Zhang X,Zhou W, Chen Q, Fang M, Zheng S, Ben S, and Li C*. (2018). The Mediator subunit MED31 is required for radial patterning of Arabidopsis roots. Proc. Natl. Acad. Sci. USA. 115: E5624–E5633.
8. Qi L, Zhang X, Zhai H, Liu J, Wu F, Li C*, and Chen Q*. (2018). Elongator is required for root stem cell maintenance by regulating SHORT ROOT transcription. Plant Physiol. 179: 220–232.
9. Zhang R, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng Y-Q, Xiong L, Li C, Hetherington A, and Liang Y-K*. (2018). BIG regulates stomatal immunity and jasmonate production in Arabidopsis. New Phytol. 222: 335–348.
10. Deng L, Wang H, Sun C, Li Q, Jiang H, Du M, Li C-B, and Li C*. (2018). Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. Journal of Genetics and Genomics. J. Genet. Genomics 45: 51–54.
11. Lian J, Han H, Zhao J and Li C*. (2018). In-vitro and in-planta Botrytis cinerea inoculation assays for tomato. Bio-protocol 8: e2810.
12. An C, Li L, Zhai Q*, You Y, Deng L, Wu F, Chen R, Jiang H, Wang H, Chen Q, and Li C*. (2018). Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. Proc. Natl. Acad. Sci. USA. 114:E8930–E8939.
13. Du M, Zhao J*, Tzeng D, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li C-B, and Li C*. (2017). MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. Plant Cell 29: 1883–1906.
14. Li J, Li C, and Smith S.M. (Eds.). (2017). Hormone Metabolism and Signaling in Plants. Woodhead Publishing, Elsevier. (Book)
15. Zhai Q, Yan C, Li L, Xie D, and Li C*. (2017). Jasmonates. In Hormone Metabolism and Signaling in Plants. 1st ed. Li J, Li C and Smith M.S. ed (London, United Kingdom: ELSEVIER Academic Press), pp. 243–263. (Book chapter)
16. Li C*, Li J*, Harter K, Lee Y, Leung J, Martinoia E, Matsuoka M, Offringa R, Qu L, Schroeder J,and Zhao Y.(2016). Toward a molecular understanding of plant hormone actions.Mol. Plant 9: 1–3.
17. Xu Y, Jin W, Li N, Zhang W, Liu C, Li C*, and Li Y*. (2016). UBIQUITIN-SPECIFIC PROTEASE14 interacts with ULTRAVIOLET-B INSENSITIVE4 to regulate endoreduplication and cell and organ growth in Arabidopsis. Plant Cell 28: 1200–1214.
18. Ito J, Fukaki H, Onoda M, Li L, Li C, Tasaka M, and Furutani M*. (2016). Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proc. Natl. Acad. Sci. USA. 113: 6562–6567.
19. Ou Y, Lu X, Zi Q, Xun Q, Zhang J, Wu Y, Shi H, Wei Z, Zhao B, Zhang X, He K, Gou X, Li C, and Li J*. (2016). RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res. 26: 686–698.
20. Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q*, and Li C*. (2015).Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27: 2814–2828. (Recommended in F1000 Prime)
21. Chen Q , Liu Y, Maere S, Lee E, Van Isterdael G, Xie Z, Xuan W, Lucas J, Vassileva V, Kitakura S, Marhavy P, Wabnik K, Geldner N, Benkova E, Le J, Fukaki H, Grotewold E, Li C, Friml J, Sack F, Beeckman T*, and Vanneste S*. (2015). A coherent transcriptional feed-forward motif controls auxin-sensitive PIN3 expression for lateral root development. Nature Commun. 6: 8821.
22. Li C*. (2015). Toward understanding the stem-cell origin and the molecular regulation of rice tillering. J. Genet. Genomics 42: 47–48.
23. Zhou Z, Wu Y, Yang Y, Du M, Zhang X, Guo Y, Li C, and Zhou J*. (2015). An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion. Plant Cell 27: 2032–2041.
24. Wang Z, Mao J, Zhao Y, Li C, and Xiang C*. (2015). L-Cysteine inhibits root elongationthrough auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana. J. Integr. Plant Biol. 57: 186–197.
25. Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang D, and Qi Y*. (2015). The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryzasativa L.). Plant J. 83: 818–830.
26. Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Zhuo Huang Z, Wang B, Jiang H, Huang T, Li C-B, Wei J, Kang L, Li J, and Li C*. (2014). Closely-related NAC transcription factors of tomato differentially regulate stomatal closure and re-opening during pathogen attack. Plant Cell 26: 3167–3184.
27. Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, and Xie D*. (2014). Interaction of MYC2 with EIN3 modulates antagonism between jasmonate and ethylene signaling. Plant Cell 26: 263–279.
28. Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y, Li C, and Li Y*. (2014). The ubiquitin receptor DA1 controls seed size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. Plant Cell 26: 665–677.
29. Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, and Jiang D*. (2014). OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa.L). Plant J. 79: 106–117.
30. Wang S, Xu Y, Li Z, Zhang S, Li C, Qian Q, Jiang D,and Qi Y*. (2014). OsMOGS is required for N-glycan formation and auxin-mediated root development in rice. Plant J. 78: 632–645.
31. Kang J, Yu H, Tian C, Zhou W, Li C, Jiao Y, and Liu D*. (2014). Suppression of photosynthetic gene expression in roots is required for sustained root growth under phosphate deficiency. Plant Physiol. 165: 1156–1170.
32. Zhang G, Li S, Wang L, Ye W, Zeng D, Rao Y, Peng Y, Hu J, Yang Y, Xu J, Ren D, Gao Z, Zhu L, Dong G, Hu X, Yan M, Guo L, Li C, and Qian Q*. (2014). LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol. Plant 7: 1350–1364.
33. Song Y, Ye M, Li C, He X, Zhu, Wang R, Su Y, Luo S, and Zeng R*. (2014). Hijacking common mycorrhizal networksfor herbivore-induced defence signaltransfer between tomato plants. Sci. Rep. 4: 3915.
34. Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li C-B, and Li C*. (2013). Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet. 9: e**.
35. Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun J, Wang H, Rennenberg H, Teale W, Paponov I, Zhou W, Li C, Li X, and Palme K. (2013). Plastid-localized GR2-controlled glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell 25: 4451–4468.
36. Sun J, Qi L, Li, Y, Zhai Q, and Li C*. (2013). PIF4 and PIF5 link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25: 2102–2114.
37. Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong M-Q, Wang Y, and Li C*. (2013). Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet. 9: e**.
38. Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng Y, Yuan L, and Li C*. (2013). The rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc. Natl. Acad. Sci. USA. 110: 3167–3172.
39. Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B, Liu J, Li C, Bednarek S, and Pan J*. (2013). Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell 25: 499–516.
40. Wei J, Yan L, Ren Q, Li C, Ge F, and Kang L*. (2013). Antagonism between herbivore-induced plant volatiles and trichomes affects tritrophic interactions. Plant Cell Environ. 36: 315–327.
41. Sun J, Qi L, and Li C*. (2012). Hormonal regulation of polar auxin transport. Signaling and Communication in Plants, Springer Verlag volume. (Book chapter)
42. Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, and Li C*. (2012). The Arabidopsis Mediator subunit MED25 differentially regulates jasmonate and ABA signalings through interacting with MYC2 and ABI5. Plant Cell 24: 2898–2916.
43. The Tomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature Volume: 485: Pages: 635–641. (Cover story)
44. Ren J, Li C-B, and Li C*. (2012). Tomato genome gets fully decoded--Paves way to tastier and healthier fruits. J. Genet. Genomics 39: 303–305.
45. Sun J, Qi L, Li Y, Chu J, and Li C*. (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet. 8: e**. (Recommended in F1000 Prime)
46. Qi L, Yan J, Li Y, Jiang H, Sun J, Chen Q, Li H, Chu J, Yan C, Sun X, Yu Y, Li C-B, and Li C*. (2012). Arabidopsis plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen Alternaria brassicicola. New Phytol. 195: 872–882.
47. Liu X, Li F, Tang J, Wang W, Zhang F, Wang G, Chu J, Yan C, Wang T, Chu C, and Li C*. (2012). Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS One 7: e50089.
48. Guo H, Kang L, Li C, Ren Q, Sun Y, Wang C, and Ge F*. (2012). Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS One 7: e41426.
49. Liu L, Wei J, Zhang M, Zhang L, Li C, and Wang Q*. (2012). Ethylene independent induction of lycopene biosynthesis intomato fruits by jasmonates. J. Exp. Bot. 53: 5751–5761.
50. Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang H, Qi J, Li X, Palme K, and Li C*. (2011).The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23: 3335–3352. (Recommended in F1000 Prime)
51. Chen M, Liu H, Kong J, Yang Y, Zhang N, Li R, Yue J, Huang J, Li C, Cheung A, and Tao L*. (2011). RopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell 23: 2880–2894.
52. Sun J, Chen Q, Qi L, Jiang H, Li S, Xu, Y, Liu F, Zhou W, Pan J, Li X, Palme K, and Li C*. (2011). Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytol. 191: 360–375. (Recommended in F1000 Prime)
53. Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, and Li C*. (2011). The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating ABA signaling and drought response. Plant Physiol. 156: 550–563.
54. Sun J, Jiang H, and Li C*. (2011). Systemin/jasmonate-mediated systemic defense signaling in tomato. Mol. Plant 4: 607–615.
55. Zhang L, Jia C, Liu L, Zhang Z, Li C, and Wang Q*. (2011). The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. J. Exp. Bot. 62: 5405–5418.
56. Sun Y, Yin J, Cao H, Li C, Kang L, and Ge F*. (2011). Elevated CO2 influences nematode-induced defense responses of tomato genotypes differing in the JA pathway. PLoS One. 6: e19751.
57. Zhou W, Wei L, Xu J, Zhai Q, Jiang H, Chen R, Chen Q, Sun J, Chu J, Zhu L, Liu C-M, and Li C*. (2010). Arabidopsis tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating post-embryonic maintenance of root stem cell niche. Plant Cell 22: 3692–3709.
58. Wei J, Wang L, Zhao J, Li C, Ge F, and Kang L*. (2010). Ecological trade-offs between jasmonic acid-dependent direct and indirect plant defences in tritrophic interactions. New Phytol. 189: 557–567.
59. Li C* and Li J. (2010). Toward understanding the molecular mechanisms governing plant hormone actions: A brief introduction to the Major Research Program “Molecular mechanisms of plant hormone actions” funded by the National Natural Science Foundation of China (NSFC). Chinese Sci. Bull. 55: 2197.
60. Liu F, Jiang H, Ye S, Chen W-P, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, and Li C*. (2010). The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res. 20: 539–552.
61. Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen J, Palme K, and Li C*. (2009). ArabidopsisASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21: 1495–1511.
62. Mueller LA et al., (2009). A snapshot of the emerging tomato genome sequence. The Plant Genome. 2: 78–92.
63. Jiang H, Li H, Bu Q, and Li C*. (2009). The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response. Plant Signal Behav. 4: 464–466.
64. Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D, and Li C*. (2009). The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of ABA signaling during seed germination and early seedling development. Plant Physiol. 150: 463–481.
65. Liang W, Li C-B, Liu F, Jiang H, Li S, Sun J, Wu X, and Li C*. (2009). The Arabidopsis homologs of CCR4-associated factor 1 exhibit mRNA deadenylation activity and play a role in plant defense responses. Cell Res. 19: 307–316.
66. Li C-B, Zhao J, Jiang H, Geng Y, Dai Y, Fan H, Zhang D, Chen J, Lu F, Shi J, Sun S, Chen J, Yan X, Lu C, Chen M, Cheng Z, Ling H, Wang Y, Xue Y, and Li C*. (2008). A snapshot of the Chinese SOL Project. J. Genet. Genomics 35: 387–390.
67. Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, and Li C*. (2008). Mutation of the rice NARROW LEAF1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol. 147: 1947–1959.
68. Bu Q, Jiang H, Li C-B, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, and Li C*. (2008). Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18: 756–767.
69. Li H, Sun J, Xu Y, Jiang H, Wu X, and Li C*. (2007). The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol. Biol. 65: 655–665.
70. Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, and Li C*. (2007). The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol. 48: 1148–1158.
71. Zhai Q, Li C-B, Zheng W, Wu X, Zhao J, Zhou G, Jiang H, Sun J, Lou Y, and Li C*. (2007). Phytochrome chromophore deficiency leads to overproduction of jasmonic acid and elevated expression of jasmonate-responsive genes in Arabidopsis. Plant Cell Physiol. 48: 1061–1071.
72. Zheng W, Zhai Q, Sun J, Li C-B, Zhang L, Li H, Zhang X, Li S, Xu Y, Jiang H, Wu X, and Li C*. (2006). Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis. Plant Physiol. 141: 1400–1413.
73. Li C-B, Zhao J, Jiang H, Wu X, Sun J, Zhang C, Wang , Lou Y, and Li C*. (2006). The wound-response mutant suppressor of prosystemin-mediated responses6 (spr6) is a weak allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1). Plant Cell Physiol. 47: 653–663.
74. Li C-B, Sun J, Jiang H, Wu X, and Li C*. (2006). Systemic defense signaling in tomato. Chinese Sci. Bull. 50: 1817–1822.
75. Canoles MA, Beaudry RM, Li C, and Howe GA*. (2006). Deficiency of linolenic acid in lefad7 mutant tomato changes the volatile profile and sensory perception of disrupted leaf and fruit tissue. J. Amer. Soc. Hort. Sci. 131: 284–289.
76. Mueller LA*, Tanksley SD, Giovannoni JJ, van Eck J, Stack S, Choi D, Kim BD, Chen M, Cheng Z, Li C, Ling H, Xue Y, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh NK, Stiekema W, Lindhout P, Jesse T, Lankhorst RK, Bouzayen M, Shibata,D, Tabata S, Granell A, Botella MA, Giuliano G, Frusciante L, Causse M, and Zamir D. (2005). The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comp. Funct. Genomics 6: 153–158.
77. Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, and Howe GA*. (2005). Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17: 971–986.
78. Li C, Liu G, Xu C, Lee G, Bauer P, Ganal M, Ling H, and Howe GA*. (2003). The tomato Suppressor of prosystemin-mediatedresponse2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15: 1646–1661.
79. Li L#, Li C#, Lee GI, and Howe GA*. (2002). Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. USA. 99: 6416–6421. (#These authors contributed equally to this work)
80. Li C, Williams MM, Loh Y-T, Lee GI, and Howe GA*. (2002). Resistance of cultivated tomato to cell content-feeding herbivores is regulated by the octadecanoid-signaling pathway. Plant Physiol. 130: 494–503.
81. Li L, Li C, and Howe GA*. (2001). Genetic analysis of wound signaling in tomato: evidence for a dual role of jasmonic acid in defense and female fertility. Plant Physiol. 127: 1414–1417.
相关话题/遗传 中国科学院
中国科学院遗传与发育生物学研究所导师教师师资介绍简介-梁承志
梁承志职称:研究员职务:生物大数据分析平台首席科学家联系电话:传真:附件:E-mail:实验室主页:研究方向:基因组大数据分析梁承志,博士,研究员,博士生导师 1989年毕业于武汉大学获得遗传学学士学位,1995年于中科院遗传所获得遗传学博士学位,2001在加拿大Waterloo大学获得数学与计算 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2020-05-26中国科学院遗传与发育生物学研究所导师教师师资介绍简介-李家洋
李家洋职称:研究员职务:联系电话:86-传真:附件:E-mail:实验室主页:http://english.genetics.cas.cn/lijiayang研究方向:高等植物生长发育与代谢李家洋博士研究员、博士生导师,植物分子遗传学家联系电话86-;E-mail:jyli@genetics.ac. ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2020-05-26中国科学院遗传与发育生物学研究所导师教师师资介绍简介-王国栋
王国栋职称:研究员职务:联系电话:86-传真:附件:E-mail:实验室主页:研究方向:植物功能代谢组学王国栋,博士,研究员,博士生导师1996年毕业于南开大学化学系,1999年获中科院上海药物研究所有机化学硕士学位,2003年获中科院上海植物生理生态研究所植物分子遗传学博士学位。2003年11月至 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2020-05-26中国科学院遗传与发育生物学研究所导师教师师资介绍简介-任勃
任勃职称:研究员职务:联系电话:实验室电话:传真:附件:E-mail:实验室主页:研究方向:生物固氮的分子机理和氮素高效利用任勃,博士,研究员,博士生导师2002年,获陕西师范大学学士学位;2005年,获中科院植物所硕士学位;2010年,获中科院遗传发育所博士学位;2010-2015年,中科院遗传发 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2020-05-26中国科学院遗传与发育生物学研究所导师教师师资介绍简介-林少扬
林少扬职称:研究员职务:联系电话:86-传真:86-附件:E-mail:实验室主页:研究方向:水稻染色体组设计分子育种林少扬,博士,研究员,博士生导师1984年获得华南农学院学士,1989年获得日本琉球大学硕士,1993年获得日本千叶大学博士。1993-2000年,工作于日本农林水产先端技术研究所, ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2020-05-26中国科学院遗传与发育生物学研究所导师教师师资介绍简介-谢旗
谢旗职称:研究员职务:联系电话:86-(O);86-(L)传真:86-附件:E-mail:实验室主页:研究方向:泛素介导的蛋白修饰及植物逆境胁迫信号传导的分子机制谢旗,博士,研究员,博士生导师 1987年中山大学学士。1990年广东省微生物研究所硕士。1994年西班牙UniversidaddeMa ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2020-05-26中国科学院遗传与发育生物学研究所导师教师师资介绍简介-王永红
王永红职称:研究员职务:联系电话:86-传真:附件:E-mail:实验室主页:研究方向:王永红,博士,研究员,博士生导师1991年获北京农学院学士学位,1998年获中国科学院遗传所硕士学位,2004年获中国科学院遗传与发育所博士学位。曾于2001年10月至2002年2月在香港科技大学进行访问研究,于 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2020-05-26中国科学院遗传与发育生物学研究所导师教师师资介绍简介-姚善国
姚善国职称:研究员职务:联系电话:86-传真:附件:E-mail:实验室主页:研究方向:水稻分子遗传育种姚善国,博士,研究员,博士生导师1991年获安徽农业大学农学学士学位,2004年获日本爱媛大学植物遗传育种博士学位。2004-2009年期间先后在北海道大学和中央农业综合研究中心北陆分中心从事博士 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2020-05-26中国科学院遗传与发育生物学研究所导师教师师资介绍简介-许操
许操职称:研究员职务:联系电话:传真:附件:E-mail:实验室主页:http://www.xulabgenetics.cn研究方向:许操,博士,研究员,博士生导师2001-2005:山东农业大学,学士;2005-2012:中国科学院遗传与发育生物学研究所,博士;2013-2017:美国冷泉港实验室 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2020-05-26中国科学院遗传与发育生物学研究所导师教师师资介绍简介-周俭民
周俭民职称:研究员职务:联系电话:86-传真:附件:E-mail:实验室主页:研究方向:周俭民,博士,研究员,博士生导师教育经历1989-1994年,普度大学园艺系,博士。1984-1987年,中国科学院遗传研究所,硕士。1980-1984年,四川大学生物系,学士。任职经历2012年-现在,中国科学 ...中科院遗传与发育生物学研究所 本站小编 Free考研考试 2020-05-26