PNAS
Abstract
Double fertilization is a key innovation for the evolutionary success of angiosperms by which the two fertilized female gametes, the egg cell and central cell, generate the embryo and endosperm, respectively. The female gametophyte (embryo sac) enclosed in the sporophyte is derived from a one-celled haploid cell lineage. It undergoes successive events of mitotic divisions, cellularization, and cell specification to give rise to the mature embryo sac, which contains the two female gametes accompanied by two types of accessory cells, namely synergids and antipodals. How the cell fate of the central cell is specified has long been equivocal and is further complicated by the structural diversity of female gametophyte across plant taxa. Here, MADS-box protein AGL80 was verified as a transcriptional repressor that directly suppresses the expression of accessory cell-specific genes to specify the central cell. Further genetic rescue and phylogenetic assay of the AGL80 orthologs revealed a possible conserved mechanism in the Brassicaceae family. Results from this study provide insight into the molecular determination of the second female gamete cell in Brassicaceae.
论文编号: | DOI:10.1073/pnas.1909465117 |
论文题目: | Transcriptional Repression Specifies the Central Cell for Double Fertilization |
英文论文题目: | Transcriptional Repression Specifies the Central Cell for Double Fertilization |
第一作者: | Mengxia Zhang, Shanshan Zhu, Yongchao Xu, Yalong Guo, Weicai Yang, and Hongju Li |
英文第一作者: | Mengxia Zhang, Shanshan Zhu, Yongchao Xu, Yalong Guo, Weicai Yang, and Hongju Li |
联系作者: | |
英文联系作者: | |
外单位作者单位: | |
英文外单位作者单位: | |
发表年度: | 2020-03-06 |
卷: | |
期: | |
页码: | |
摘要: | Double fertilization is a key innovation for the evolutionary success of angiosperms by which the two fertilized female gametes, the egg cell and central cell, generate the embryo and endosperm, respectively. The female gametophyte (embryo sac) enclosed in the sporophyte is derived from a one-celled haploid cell lineage. It undergoes successive events of mitotic divisions, cellularization, and cell specification to give rise to the mature embryo sac, which contains the two female gametes accompanied by two types of accessory cells, namely synergids and antipodals. How the cell fate of the central cell is specified has long been equivocal and is further complicated by the structural diversity of female gametophyte across plant taxa. Here, MADS-box protein AGL80 was verified as a transcriptional repressor that directly suppresses the expression of accessory cell-specific genes to specify the central cell. Further genetic rescue and phylogenetic assay of the AGL80 orthologs revealed a possible conserved mechanism in the Brassicaceae family. Results from this study provide insight into the molecular determination of the second female gamete cell in Brassicaceae. |
英文摘要: | Double fertilization is a key innovation for the evolutionary success of angiosperms by which the two fertilized female gametes, the egg cell and central cell, generate the embryo and endosperm, respectively. The female gametophyte (embryo sac) enclosed in the sporophyte is derived from a one-celled haploid cell lineage. It undergoes successive events of mitotic divisions, cellularization, and cell specification to give rise to the mature embryo sac, which contains the two female gametes accompanied by two types of accessory cells, namely synergids and antipodals. How the cell fate of the central cell is specified has long been equivocal and is further complicated by the structural diversity of female gametophyte across plant taxa. Here, MADS-box protein AGL80 was verified as a transcriptional repressor that directly suppresses the expression of accessory cell-specific genes to specify the central cell. Further genetic rescue and phylogenetic assay of the AGL80 orthologs revealed a possible conserved mechanism in the Brassicaceae family. Results from this study provide insight into the molecular determination of the second female gamete cell in Brassicaceae. |
刊物名称: | PNAS |
英文刊物名称: | PNAS |
论文全文: | |
英文论文全文: | |
全文链接: | |
其它备注: | Transcriptional Repression Specifies the Central Cell for Double Fertilization. Mengxia Zhang, Shanshan Zhu, Yongchao Xu, Yalong Guo, Weicai Yang, and Hongju Li. PNAS. DOI:10.1073/pnas.1909465117 |
英文其它备注: | |
学科: | |
英文学科: | |
影响因子: | |
第一作者所在部门: | |
英文第一作者所在部门: | |
论文出处: | |
英文论文出处: | |
论文类别: | |
英文论文类别: | |
参与作者: | |
英文参与作者: |