The Plant Journal
Abstract
The centromere, as an essential element to mediate chromosome segregation, is epigenetically determined by CENH3‐containing nucleosomes as a functional marker; therefore the accurate deposition of CENH3 is crucial to chromosome transmission. We characterized the deposition of CENH3 in maize by over‐expression and mutational analysis. Our results revealed that over‐expressing CENH3 in callus is lethal while over‐expressing GFP‐CENH3 and CENH3‐YFP in callus and plants is not and can be partly deposited normally. Different mutations of GFP‐CENH3 demonstrated that CENH3‐Thr4 in the N terminus was needed for the deposition as a positive phosphorylation site and the last five amino acids in the C terminus are necessary for deposition. The C terminal tail of CENH3 is confirmed to be responsible for the interaction of CENH3 and histone H4, which indicates that CENH3 maintains deposition in centromeres via interacting with H4 to form stable nucleosomes. For GFP‐CENH3 and CENH3‐YFP, the fused tags at the termini probably affect the structure of CENH3 and reduce its interaction with other proteins, which in turn could decrease proper deposition. Taken together, multiple amino acids or motifs were shown to play essential roles in CENH3 deposition, which is suggested to be affected by numerous factors in maize.
论文编号: | DOI:10.1111/tpj.14606 |
论文题目: | The Deposition of CENH3 in Maize is Stringently Regulated |
英文论文题目: | The Deposition of CENH3 in Maize is Stringently Regulated |
第一作者: | Chao Feng, Jing Yuan, Han Bai, Yalin Liu, Handong Su, Yang Liu, Lindan Shi, Zhi Gao, James A. Birchler, Fangpu Han |
英文第一作者: | Chao Feng, Jing Yuan, Han Bai, Yalin Liu, Handong Su, Yang Liu, Lindan Shi, Zhi Gao, James A. Birchler, Fangpu Han |
联系作者: | |
英文联系作者: | |
外单位作者单位: | |
英文外单位作者单位: | |
发表年度: | 2019-11-15 |
卷: | |
期: | |
页码: | |
摘要: | The centromere, as an essential element to mediate chromosome segregation, is epigenetically determined by CENH3‐containing nucleosomes as a functional marker; therefore the accurate deposition of CENH3 is crucial to chromosome transmission. We characterized the deposition of CENH3 in maize by over‐expression and mutational analysis. Our results revealed that over‐expressing CENH3 in callus is lethal while over‐expressing GFP‐CENH3 and CENH3‐YFP in callus and plants is not and can be partly deposited normally. Different mutations of GFP‐CENH3 demonstrated that CENH3‐Thr4 in the N terminus was needed for the deposition as a positive phosphorylation site and the last five amino acids in the C terminus are necessary for deposition. The C terminal tail of CENH3 is confirmed to be responsible for the interaction of CENH3 and histone H4, which indicates that CENH3 maintains deposition in centromeres via interacting with H4 to form stable nucleosomes. For GFP‐CENH3 and CENH3‐YFP, the fused tags at the termini probably affect the structure of CENH3 and reduce its interaction with other proteins, which in turn could decrease proper deposition. Taken together, multiple amino acids or motifs were shown to play essential roles in CENH3 deposition, which is suggested to be affected by numerous factors in maize. |
英文摘要: | The centromere, as an essential element to mediate chromosome segregation, is epigenetically determined by CENH3‐containing nucleosomes as a functional marker; therefore the accurate deposition of CENH3 is crucial to chromosome transmission. We characterized the deposition of CENH3 in maize by over‐expression and mutational analysis. Our results revealed that over‐expressing CENH3 in callus is lethal while over‐expressing GFP‐CENH3 and CENH3‐YFP in callus and plants is not and can be partly deposited normally. Different mutations of GFP‐CENH3 demonstrated that CENH3‐Thr4 in the N terminus was needed for the deposition as a positive phosphorylation site and the last five amino acids in the C terminus are necessary for deposition. The C terminal tail of CENH3 is confirmed to be responsible for the interaction of CENH3 and histone H4, which indicates that CENH3 maintains deposition in centromeres via interacting with H4 to form stable nucleosomes. For GFP‐CENH3 and CENH3‐YFP, the fused tags at the termini probably affect the structure of CENH3 and reduce its interaction with other proteins, which in turn could decrease proper deposition. Taken together, multiple amino acids or motifs were shown to play essential roles in CENH3 deposition, which is suggested to be affected by numerous factors in maize. |
刊物名称: | The Plant Journal |
英文刊物名称: | The Plant Journal |
论文全文: | |
英文论文全文: | |
全文链接: | |
其它备注: | Chao Feng, Jing Yuan, Han Bai, Yalin Liu, Handong Su, Yang Liu, Lindan Shi, Zhi Gao, James A. Birchler, Fangpu Han. The Deposition of CENH3 in Maize is Stringently Regulated. The Plant Journal. DOI:10.1111/tpj.14606 |
英文其它备注: | |
学科: | |
英文学科: | |
影响因子: | |
第一作者所在部门: | |
英文第一作者所在部门: | |
论文出处: | |
英文论文出处: | |
论文类别: | |
英文论文类别: | |
参与作者: | |
英文参与作者: |