Nature Plants
Abstract
Bioactive gibberellins (GAs, diterpenes) are essential hormones in land plants, controlling many aspects of plant growth and developments. In flowering plants, 13-OH (low bioactivity; such as GA1) and 13-H GAs (high bioactivity; such as GA4) frequently coexist. However, the bona fide GA 13-hydroxylase and its physiological functions in Arabidopsis remain unknown. Here, we report that novel cytochrome P450 genes (CYP72A9 and its homologs) encode active GA 13-hydroxylases in Brassicaceae plants. CYP72A9-overexpressing plants exhibited semi-dwarfism, which was caused by significant reduction in GA4 levels. Biochemical assays revealed that recombinant CYP72A9 protein catalyzed the conversion from 13-H GAs to the corresponding 13-OH GAs. CYP72A9 was expressed predominantly in developing seeds in Arabidopsis. Freshly harvested seeds of cyp72a9 mutants germinated more quickly than wild-type, while long-term storage and stratification-treated seeds did not. The evolutionary origin of GA 13-oxidases from the CYP72A subfamily also was investigated and discussed here.
论文编号: | DOI:10.1038/s41477-019-0544-z |
论文题目: | CYP72A Enzymes Catalyze 13-Hydrolyzation of Gibberellins |
英文论文题目: | CYP72A Enzymes Catalyze 13-Hydrolyzation of Gibberellins |
第一作者: | Juan He, Qingwen Chen, Peiyong Xin, Jia Yuan, Yihua Ma, Xuemei Wang, Meimei Xu, Jinfang Chu, Reuben J Peters, and Guodong Wang |
英文第一作者: | Juan He, Qingwen Chen, Peiyong Xin, Jia Yuan, Yihua Ma, Xuemei Wang, Meimei Xu, Jinfang Chu, Reuben J Peters, and Guodong Wang |
联系作者: | |
英文联系作者: | |
外单位作者单位: | |
英文外单位作者单位: | |
发表年度: | 2019-09-17 |
卷: | |
期: | |
页码: | |
摘要: | Bioactive gibberellins (GAs, diterpenes) are essential hormones in land plants, controlling many aspects of plant growth and developments. In flowering plants, 13-OH (low bioactivity; such as GA1) and 13-H GAs (high bioactivity; such as GA4) frequently coexist. However, the bona fide GA 13-hydroxylase and its physiological functions in Arabidopsis remain unknown. Here, we report that novel cytochrome P450 genes (CYP72A9 and its homologs) encode active GA 13-hydroxylases in Brassicaceae plants. CYP72A9-overexpressing plants exhibited semi-dwarfism, which was caused by significant reduction in GA4 levels. Biochemical assays revealed that recombinant CYP72A9 protein catalyzed the conversion from 13-H GAs to the corresponding 13-OH GAs. CYP72A9 was expressed predominantly in developing seeds in Arabidopsis. Freshly harvested seeds of cyp72a9 mutants germinated more quickly than wild-type, while long-term storage and stratification-treated seeds did not. The evolutionary origin of GA 13-oxidases from the CYP72A subfamily also was investigated and discussed here. |
英文摘要: | Bioactive gibberellins (GAs, diterpenes) are essential hormones in land plants, controlling many aspects of plant growth and developments. In flowering plants, 13-OH (low bioactivity; such as GA1) and 13-H GAs (high bioactivity; such as GA4) frequently coexist. However, the bona fide GA 13-hydroxylase and its physiological functions in Arabidopsis remain unknown. Here, we report that novel cytochrome P450 genes (CYP72A9 and its homologs) encode active GA 13-hydroxylases in Brassicaceae plants. CYP72A9-overexpressing plants exhibited semi-dwarfism, which was caused by significant reduction in GA4 levels. Biochemical assays revealed that recombinant CYP72A9 protein catalyzed the conversion from 13-H GAs to the corresponding 13-OH GAs. CYP72A9 was expressed predominantly in developing seeds in Arabidopsis. Freshly harvested seeds of cyp72a9 mutants germinated more quickly than wild-type, while long-term storage and stratification-treated seeds did not. The evolutionary origin of GA 13-oxidases from the CYP72A subfamily also was investigated and discussed here. |
刊物名称: | Nature Plants |
英文刊物名称: | Nature Plants |
论文全文: | |
英文论文全文: | |
全文链接: | |
其它备注: | Juan He, Qingwen Chen, Peiyong Xin, Jia Yuan, Yihua Ma, Xuemei Wang, Meimei Xu, Jinfang Chu, Reuben J Peters, and Guodong Wang. CYP72A Enzymes Catalyze 13-Hydrolyzation of Gibberellins. Nature Plants. DOI:10.1038/s41477-019-0544-z |
英文其它备注: | |
学科: | |
英文学科: | |
影响因子: | |
第一作者所在部门: | |
英文第一作者所在部门: | |
论文出处: | |
英文论文出处: | |
论文类别: | |
英文论文类别: | |
参与作者: | |
英文参与作者: |