Nature Communications
Abstract
The breeding of cereals with altered gibberellin (GA) signaling propelled the ‘Green Revolution’ by generating semidwarf plants with increased tiller number. The mechanism by which GAs promote shoot height has been studied extensively, but it is not known what causes the inverse relationship between plant height and tiller number. Here we show that rice tiller number regulator MONOCULM 1 (MOC1) is protected from degradation by binding to the DELLA protein SLENDER RICE 1 (SLR1). GAs trigger the degradation of SLR1, leading to stem elongation and also to the degradation of MOC1, and hence a decrease in tiller number. This discovery provides a molecular explanation for the coordinated control of plant height and tiller number in rice by GAs, SLR1 and MOC1.
论文编号: | DOI:10.1038/s41467-019-10667-2 |
论文题目: | SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice |
英文论文题目: | SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice |
第一作者: | Zhigang Liao, Hong Yu, Jingbo Duan, Kun Yuan, Chaoji Yu, Xiangbing Meng, Liquan Kou, Mingjiang Chen, Yanhui Jing, Guifu Liu, Steven M. Smith, Jiayang Li |
英文第一作者: | Zhigang Liao, Hong Yu, Jingbo Duan, Kun Yuan, Chaoji Yu, Xiangbing Meng, Liquan Kou, Mingjiang Chen, Yanhui Jing, Guifu Liu, Steven M. Smith, Jiayang Li |
联系作者: | |
英文联系作者: | |
外单位作者单位: | |
英文外单位作者单位: | |
发表年度: | 2019-06-24 |
卷: | |
期: | |
页码: | |
摘要: | The breeding of cereals with altered gibberellin (GA) signaling propelled the ‘Green Revolution’ by generating semidwarf plants with increased tiller number. The mechanism by which GAs promote shoot height has been studied extensively, but it is not known what causes the inverse relationship between plant height and tiller number. Here we show that rice tiller number regulator MONOCULM 1 (MOC1) is protected from degradation by binding to the DELLA protein SLENDER RICE 1 (SLR1). GAs trigger the degradation of SLR1, leading to stem elongation and also to the degradation of MOC1, and hence a decrease in tiller number. This discovery provides a molecular explanation for the coordinated control of plant height and tiller number in rice by GAs, SLR1 and MOC1. |
英文摘要: | The breeding of cereals with altered gibberellin (GA) signaling propelled the ‘Green Revolution’ by generating semidwarf plants with increased tiller number. The mechanism by which GAs promote shoot height has been studied extensively, but it is not known what causes the inverse relationship between plant height and tiller number. Here we show that rice tiller number regulator MONOCULM 1 (MOC1) is protected from degradation by binding to the DELLA protein SLENDER RICE 1 (SLR1). GAs trigger the degradation of SLR1, leading to stem elongation and also to the degradation of MOC1, and hence a decrease in tiller number. This discovery provides a molecular explanation for the coordinated control of plant height and tiller number in rice by GAs, SLR1 and MOC1. |
刊物名称: | Nature Communications |
英文刊物名称: | Nature Communications |
论文全文: | |
英文论文全文: | |
全文链接: | |
其它备注: | Zhigang Liao, Hong Yu, Jingbo Duan, Kun Yuan, Chaoji Yu, Xiangbing Meng, Liquan Kou, Mingjiang Chen, Yanhui Jing, Guifu Liu, Steven M. Smith, Jiayang Li. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nature Communications. DOI:10.1038/s41467-019-10667-2 |
英文其它备注: | |
学科: | |
英文学科: | |
影响因子: | |
第一作者所在部门: | |
英文第一作者所在部门: | |
论文出处: | |
英文论文出处: | |
论文类别: | |
英文论文类别: | |
参与作者: | |
英文参与作者: |