Molecular Plant
Abstract
Many microRNAs (miRNAs) are critical regulators of plant antiviral defense. However, little is known as to how these miRNAs respond to virus invasion at the transcriptional level. We established previously that defense to Rice stripe virus (RSV) invasion entailed a reduction of miR528 accumulation in rice, thus alleviating miR528-mediated degradation of L-Ascorbate Oxidase (AO) mRNA, bolstering the antiviral activity of AO. Here we show that this miR528-AO defense module is also regulated by the transcription factor SPL9. SPL9 displayed high affinity binding to specific motifs within the promoter region of miR528. Loss-of-function mutations in SPL9 correlated with a significant reduction of miR528 but a substantial increase of AO mRNA, enhancing rice resistance to RSV. Conversely, transgenic overexpression of SPL9 stimulated the expression of miR528, hence lowering the level of AO mRNA and compromising rice defense to RSV. Importantly, gain in RSV susceptibility did not occur when SPL9 overexpression was attempted in mir528 loss-of-function mutants, or in transgenic rice expressing a miR528-resistant AO. In conclusion, SPL9-mediated transcriptional activation of miR528 expression adds a novel layer of regulation of the miR528-AO antiviral defense.
论文编号: | DOI:10.1016/j.molp.2019.04.010 |
论文题目: | Transcriptional Regulation of miR528 by OsSPL9 Orchestrates Antiviral Response in Rice |
英文论文题目: | Transcriptional Regulation of miR528 by OsSPL9 Orchestrates Antiviral Response in Rice |
第一作者: | Shengze Yao, Zhirui Yang, Rongxin Yang, Yu Huang, Guo Ge, Xiangyue Kong, Ying Lan, Tong Zhou, He Wang, Wenming Wang, Xiaofeng Cao, Jianguo Wu and Yi Li |
英文第一作者: | Shengze Yao, Zhirui Yang, Rongxin Yang, Yu Huang, Guo Ge, Xiangyue Kong, Ying Lan, Tong Zhou, He Wang, Wenming Wang, Xiaofeng Cao, Jianguo Wu and Yi Li |
联系作者: | |
英文联系作者: | |
外单位作者单位: | |
英文外单位作者单位: | |
发表年度: | 2019-05-07 |
卷: | |
期: | |
页码: | |
摘要: | Many microRNAs (miRNAs) are critical regulators of plant antiviral defense. However, little is known as to how these miRNAs respond to virus invasion at the transcriptional level. We established previously that defense to Rice stripe virus (RSV) invasion entailed a reduction of miR528 accumulation in rice, thus alleviating miR528-mediated degradation of L-Ascorbate Oxidase (AO) mRNA, bolstering the antiviral activity of AO. Here we show that this miR528-AO defense module is also regulated by the transcription factor SPL9. SPL9 displayed high affinity binding to specific motifs within the promoter region of miR528. Loss-of-function mutations in SPL9 correlated with a significant reduction of miR528 but a substantial increase of AO mRNA, enhancing rice resistance to RSV. Conversely, transgenic overexpression of SPL9 stimulated the expression of miR528, hence lowering the level of AO mRNA and compromising rice defense to RSV. Importantly, gain in RSV susceptibility did not occur when SPL9 overexpression was attempted in mir528 loss-of-function mutants, or in transgenic rice expressing a miR528-resistant AO. In conclusion, SPL9-mediated transcriptional activation of miR528 expression adds a novel layer of regulation of the miR528-AO antiviral defense. |
英文摘要: | Many microRNAs (miRNAs) are critical regulators of plant antiviral defense. However, little is known as to how these miRNAs respond to virus invasion at the transcriptional level. We established previously that defense to Rice stripe virus (RSV) invasion entailed a reduction of miR528 accumulation in rice, thus alleviating miR528-mediated degradation of L-Ascorbate Oxidase (AO) mRNA, bolstering the antiviral activity of AO. Here we show that this miR528-AO defense module is also regulated by the transcription factor SPL9. SPL9 displayed high affinity binding to specific motifs within the promoter region of miR528. Loss-of-function mutations in SPL9 correlated with a significant reduction of miR528 but a substantial increase of AO mRNA, enhancing rice resistance to RSV. Conversely, transgenic overexpression of SPL9 stimulated the expression of miR528, hence lowering the level of AO mRNA and compromising rice defense to RSV. Importantly, gain in RSV susceptibility did not occur when SPL9 overexpression was attempted in mir528 loss-of-function mutants, or in transgenic rice expressing a miR528-resistant AO. In conclusion, SPL9-mediated transcriptional activation of miR528 expression adds a novel layer of regulation of the miR528-AO antiviral defense. |
刊物名称: | Molecular Plant |
英文刊物名称: | Molecular Plant |
论文全文: | |
英文论文全文: | |
全文链接: | |
其它备注: | Shengze Yao, Zhirui Yang, Rongxin Yang, Yu Huang, Guo Ge, Xiangyue Kong, Ying Lan, Tong Zhou, He Wang, Wenming Wang, Xiaofeng Cao, Jianguo Wu and Yi Li. Transcriptional Regulation of miR528 by OsSPL9 Orchestrates Antiviral Response in Rice. Molecular Plant. DOI:10.1016/j.molp.2019.04.010 |
英文其它备注: | |
学科: | |
英文学科: | |
影响因子: | |
第一作者所在部门: | |
英文第一作者所在部门: | |
论文出处: | |
英文论文出处: | |
论文类别: | |
英文论文类别: | |
参与作者: | |
英文参与作者: |