Nature Plants
Abstract
To ensure high crop yields in a sustainable manner, a comprehensive understanding of the control of nutrient acquisition is required. In particular, the signalling networks controlling the coordinated utilization of the two most highly demanded mineral nutrients, nitrogen and phosphorus, are of utmost importance. Here, we reveal a mechanism by which nitrate activates both phosphate and nitrate utilization in rice (Oryza sativa L.). We show that the nitrate sensor NRT1.1B interacts with a phosphate signalling repressor SPX4. Nitrate perception strengthens the NRT1.1B–SPX4 interaction and promotes the ubiquitination and degradation of SPX4 by recruiting NRT1.1B interacting protein 1 (NBIP1), an E3 ubiquitin ligase. This in turn allows the key transcription factor of phosphate signalling, PHR2, to translocate to the nucleus and initiate the transcription of phosphorus utilization genes. Interestingly, the central transcription factor of nitrate signalling, NLP3, is also under the control of SPX4. Thus, nitrate-triggered degradation of SPX4 activates both phosphate- and nitrate-responsive genes, implementing the coordinated utilization of nitrogen and phosphorus.
论文编号: | DOI:10.1038/s41477-019-0384-1 |
论文题目: | Nitrate–NRT1.1B–SPX4 Cascade Integrates Nitrogen and Phosphorus Signalling Networks in Plants |
英文论文题目: | Nitrate–NRT1.1B–SPX4 Cascade Integrates Nitrogen and Phosphorus Signalling Networks in Plants |
第一作者: | Bin Hu, Zhimin Jiang, Wei Wang, Yahong Qiu, Zhihua Zhang, Yongqiang Liu, Aifu Li, Xiaokai Gao, Linchuan Liu, Yangwen Qian, Xiahe Huang, Feifei Yu, Sai Kang, Yiqin Wang, Junpeng Xie, Shouyun Cao, Lianhe Zhang, Yingchun Wang, Qi Xie, Stanislav Kopriva & Chengcai Chu |
英文第一作者: | Bin Hu, Zhimin Jiang, Wei Wang, Yahong Qiu, Zhihua Zhang, Yongqiang Liu, Aifu Li, Xiaokai Gao, Linchuan Liu, Yangwen Qian, Xiahe Huang, Feifei Yu, Sai Kang, Yiqin Wang, Junpeng Xie, Shouyun Cao, Lianhe Zhang, Yingchun Wang, Qi Xie, Stanislav Kopriva & Chengcai Chu |
联系作者: | |
英文联系作者: | |
外单位作者单位: | |
英文外单位作者单位: | |
发表年度: | 2019-03-26 |
卷: | |
期: | |
页码: | |
摘要: | To ensure high crop yields in a sustainable manner, a comprehensive understanding of the control of nutrient acquisition is required. In particular, the signalling networks controlling the coordinated utilization of the two most highly demanded mineral nutrients, nitrogen and phosphorus, are of utmost importance. Here, we reveal a mechanism by which nitrate activates both phosphate and nitrate utilization in rice (Oryza sativa L.). We show that the nitrate sensor NRT1.1B interacts with a phosphate signalling repressor SPX4. Nitrate perception strengthens the NRT1.1B–SPX4 interaction and promotes the ubiquitination and degradation of SPX4 by recruiting NRT1.1B interacting protein 1 (NBIP1), an E3 ubiquitin ligase. This in turn allows the key transcription factor of phosphate signalling, PHR2, to translocate to the nucleus and initiate the transcription of phosphorus utilization genes. Interestingly, the central transcription factor of nitrate signalling, NLP3, is also under the control of SPX4. Thus, nitrate-triggered degradation of SPX4 activates both phosphate- and nitrate-responsive genes, implementing the coordinated utilization of nitrogen and phosphorus. |
英文摘要: | To ensure high crop yields in a sustainable manner, a comprehensive understanding of the control of nutrient acquisition is required. In particular, the signalling networks controlling the coordinated utilization of the two most highly demanded mineral nutrients, nitrogen and phosphorus, are of utmost importance. Here, we reveal a mechanism by which nitrate activates both phosphate and nitrate utilization in rice (Oryza sativa L.). We show that the nitrate sensor NRT1.1B interacts with a phosphate signalling repressor SPX4. Nitrate perception strengthens the NRT1.1B–SPX4 interaction and promotes the ubiquitination and degradation of SPX4 by recruiting NRT1.1B interacting protein 1 (NBIP1), an E3 ubiquitin ligase. This in turn allows the key transcription factor of phosphate signalling, PHR2, to translocate to the nucleus and initiate the transcription of phosphorus utilization genes. Interestingly, the central transcription factor of nitrate signalling, NLP3, is also under the control of SPX4. Thus, nitrate-triggered degradation of SPX4 activates both phosphate- and nitrate-responsive genes, implementing the coordinated utilization of nitrogen and phosphorus. |
刊物名称: | Nature Plants |
英文刊物名称: | Nature Plants |
论文全文: | |
英文论文全文: | |
全文链接: | |
其它备注: | Bin Hu, Zhimin Jiang, Wei Wang, Yahong Qiu, Zhihua Zhang, Yongqiang Liu, Aifu Li, Xiaokai Gao, Linchuan Liu, Yangwen Qian, Xiahe Huang, Feifei Yu, Sai Kang, Yiqin Wang, Junpeng Xie, Shouyun Cao, Lianhe Zhang, Yingchun Wang, Qi Xie, Stanislav Kopriva & Chengcai Chu. Nitrate–NRT1.1B–SPX4 Cascade Integrates Nitrogen and Phosphorus Signalling Networks in Plants. Nature Plants. DOI:10.1038/s41477-019-0384-1 |
英文其它备注: | |
学科: | |
英文学科: | |
影响因子: | |
第一作者所在部门: | |
英文第一作者所在部门: | |
论文出处: | |
英文论文出处: | |
论文类别: | |
英文论文类别: | |
参与作者: | |
英文参与作者: |