(中国石油大学(北京)信息科学与工程学院 北京 102249) (mashuai9110@163.com)
出版日期:
2022-01-01基金资助:
中国石油大学(北京)科研基金项目(2462020YXZZ023)Survey on Graph Neural Network
Ma Shuai, Liu Jianwei, Zuo Xin(College of Information Science and Engineering, China University of Petroleum (Beijing), Beijing 102249)
Online:
2022-01-01Supported by:
This work was supported by the Scientific Research Foundation of China University of Petroleum(Beijing)(2462020YXZZ023).摘要/Abstract
摘要: 近几年来,将深度学习应用到处理和图结构数据相关的任务中越来越受到人们的关注.图神经网络的出现使其在上述任务中取得了重大突破,比如在社交网络、自然语言处理、计算机视觉甚至生命科学等领域得到了非常广泛的应用.图神经网络可以把实际问题看作图中节点之间的连接和消息传播问题,对节点之间的依赖关系进行建模,从而能够很好地处理图结构数据.鉴于此,系统综述了图神经网络模型以及应用.首先从谱域、空间域和池化3方面对图卷积神经网络进行了阐述.然后,描述了基于注意力机制和自编码器的图神经网络模型,并补充了一些其他方法实现的图神经网络.其次,总结了针对图神经网络能不能做大做深等问题的讨论分析.进而,概括了图神经网络的4个框架.还详细说明了在图神经网络在自然语言处理、计算机视觉等方面的应用.最后,对图神经网络未来的研究进行了展望和总结.相较于已有的图神经网络综述文章,详细阐述了谱理论知识,并对基于谱域的图卷积神经网络体系进行全面总结.同时,给出了针对空间域图卷积神经网络效率低的改进模型这一新的分类标准.并总结了针对图神经网络表达能力、理论保障等的讨论分析,增加了新的框架模型.在应用部分,阐述了图神经网络的最新应用.
参考文献
相关文章 7
[1] | 王磊, 熊于宁, 李云鹏, 刘媛媛. 一种基于增强图卷积神经网络的协同推荐模型[J]. 计算机研究与发展, 2021, 58(9): 1987-1996. |
[2] | 马扬, 刘泽一, 梁星星, 程光权, 阳方杰, 成清, 刘忠. 基于病毒传播网络的基因序列表示学习[J]. 计算机研究与发展, 2021, 58(8): 1642-1654. |
[3] | 陈波冯, 李靖东, 卢兴见, 沙朝锋, 王晓玲, 张吉. 基于深度学习的图异常检测技术综述[J]. 计算机研究与发展, 2021, 58(7): 1436-1455. |
[4] | 李涵, 严明玉, 吕征阳, 李文明, 叶笑春, 范东睿, 唐志敏. 图神经网络加速结构综述[J]. 计算机研究与发展, 2021, 58(6): 1204-1229. |
[5] | 陈晋音, 黄国瀚, 张敦杰, 张旭鸿, 纪守领. 一种面向图神经网络的图重构防御方法[J]. 计算机研究与发展, 2021, 58(5): 1075-1091. |
[6] | 李腾, 乔伟, 张嘉伟, 高怿旸, 王申奥, 沈玉龙, 马建峰. 隐私保护的基于图卷积神经网络的攻击溯源方法[J]. 计算机研究与发展, 2021, 58(5): 1006-1020. |
[7] | 严明玉, 李涵, 邓磊, 胡杏, 叶笑春, 张志敏, 范东睿, 谢源. 图计算加速架构综述[J]. 计算机研究与发展, 2021, 58(4): 862-887. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4559