1(南京邮电大学物联网学院 南京 210009);2(中国石油大学(华东)控制科学与工程学院 山东青岛 266580);3(西门子中国研究院 北京 100102) (lei.z@njupt.edu.cn)
出版日期:
2021-07-01基金资助:
国家自然科学基金项目(61772551)A Cache Replacement Algorithm for Industrial Edge Computing Application
Zhang Lei1, Li Lin1, Chen Honglong2, Daniel Bovensiepen31(College of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210009);2(College of Control Science and Engineering, China University of Petroleum, Qingdao, Shandong 266580);3(Corporate Technology, Siemens China Ltd., Beijing 100102)
Online:
2021-07-01Supported by:
This work was supported by the National Natural Science Foundation of China (61772551).摘要/Abstract
摘要: 工业应用对数据传输的确定性有严格要求,有必要通过合理的缓存策略保障工业边缘网络的实时服务性能保障.首先面向工业边缘计算应用场景阐述了边缘缓存问题模型.然后分析了工业应用中用户请求的动态性特点,结合工业用户请求的特征属性,给出用户请求内容流行度变化的预测方法.在此基础上提出了基于属性特征流行度预测的缓存替换(combing periodic popularity prediction and size caching strategy, PPPS)算法,根据最近周期窗口内主导属性特征的热度预测值,和尺寸参数一起确定缓存内容价值.实验结果表明:与MPC(most-popular content)、贪婪双尺寸(greedy dual size, GDS)、最近最久未使用(least recently used, LRU)、最近最少访问频次(least frequently used, LFU)、先进先出(first in first out, FIFO)这5种经典算法相比,提出的PPPS算法在缓存命中率和平均延迟2种性能指标下,在不同的用户请求模型、内容大小分布、内容种类参数下均取得最优性能,有效提升了边缘缓存的命中率,提高了缓存利用效率,降低了用户请求内容的延迟.
参考文献
相关文章 15
[1] | 王璐, 张健浩, 王廷, 伍楷舜. 面向云网融合的细粒度多接入边缘计算架构[J]. 计算机研究与发展, 2021, 58(6): 1275-1290. |
[2] | 张秋平, 孙胜, 刘敏, 李忠诚, 张曾琪. 面向多边缘设备协作的任务卸载和服务缓存在线联合优化机制[J]. 计算机研究与发展, 2021, 58(6): 1318-1339. |
[3] | 张燕咏, 张莎, 张昱, 吉建民, 段逸凡, 黄奕桐, 彭杰, 张宇翔. 基于多模态融合的自动驾驶感知及计算[J]. 计算机研究与发展, 2020, 57(9): 1781-1799. |
[4] | 黄倩怡, 李志洋, 谢文涛, 张黔. 智能家居中的边缘计算[J]. 计算机研究与发展, 2020, 57(9): 1800-1809. |
[5] | 刘泽宁, 李凯, 吴连涛, 王智, 杨旸. 多层次算力网络中代价感知任务调度算法[J]. 计算机研究与发展, 2020, 57(9): 1810-1822. |
[6] | 马惠荣, 陈旭, 周知, 于帅. 绿色能源驱动的移动边缘计算动态任务卸载[J]. 计算机研究与发展, 2020, 57(9): 1823-1838. |
[7] | 王志刚, 王海涛, 佘琪, 史雪松, 张益民. 机器人4.0: 边缘计算支撑下的持续学习和时空智能[J]. 计算机研究与发展, 2020, 57(9): 1854-1863. |
[8] | 卢海峰, 顾春华, 罗飞, 丁炜超, 杨婷, 郑帅. 基于深度强化学习的移动边缘计算任务卸载研究[J]. 计算机研究与发展, 2020, 57(7): 1539-1554. |
[9] | 乐光学, 戴亚盛, 杨晓慧, 刘建华, 游真旭, 朱友康. 边缘计算可信协同服务策略建模[J]. 计算机研究与发展, 2020, 57(5): 1080-1102. |
[10] | 梁玉珠, 梅雅欣, 杨毅, 马樱, 贾维嘉, 王田. 一种基于边缘计算的传感云低耦合方法[J]. 计算机研究与发展, 2020, 57(3): 639-648. |
[11] | 芦效峰, 廖钰盈, Pietro Lio, Pan Hui. 一种面向边缘计算的高效异步联邦学习机制[J]. 计算机研究与发展, 2020, 57(12): 2571-2582. |
[12] | 丁旭阳, 谢盈, 张小松. 基于边缘计算的进化多目标优化图像隐写算法[J]. 计算机研究与发展, 2020, 57(11): 2260-2270. |
[13] | 周俊, 沈华杰, 林中允, 曹珍富, 董晓蕾. 边缘计算隐私保护研究进展[J]. 计算机研究与发展, 2020, 57(10): 2027-2051. |
[14] | 宁振宇,张锋巍,施巍松. 基于边缘计算的可信执行环境研究[J]. 计算机研究与发展, 2019, 56(7): 1441-1453. |
[15] | 施巍松,张星洲,王一帆,张庆阳. 边缘计算:现状与展望[J]. 计算机研究与发展, 2019, 56(1): 69-89. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4462