(大数据知识工程教育部重点实验室(合肥工业大学) 合肥 230601) (合肥工业大学计算机与信息学院 合肥 230601) (合肥工业大学大知识科学研究院 合肥 230601) (jsjxhuxg@hfut.edu.cn)
出版日期:
2020-12-01基金资助:
国家重点研发计划项目(2016YFB1000901);国家自然科学基金项目(61806065);中央高校基本科研业务费专项资金项目(JZ2020HGQA0186)Research Advances on Knowledge Tracing Models in Educational Big Data
Hu Xuegang, Liu Fei, Bu Chenyang(Key Laboratory of Knowledge Engineering with Big Data (Hefei University of Technology), Ministry of Education, Hefei 230601) (School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230601) (Research Institute of Big Knowledge, Hefei University of Technology, Hefei 230601)
Online:
2020-12-01Supported by:
This work was supported by the National Key Research and Development Program of China (2016YFB1000901), the National Natural Science Foundation of China (61806065), and the Fundamental Research Funds for the Central Universities (JZ2020HGQA0186).摘要/Abstract
摘要: 教育信息化的不断推进和在线教育的蓬勃发展产生了海量的教育数据,如何挖掘和分析教育大数据成为了教育领域和大数据知识工程领域亟待解决的问题.认知跟踪模型通过获取学生作答习题的得分表现,追踪学生随时间变化的认知状态,从而预测学生在未来时间的作答表现.对教育大数据中认知跟踪模型进行了回顾、分析和展望.首先从模型的原理、步骤和方法等维度详细介绍了认知跟踪模型,包括基于贝叶斯方法和深度学习方法2类认知跟踪模型.同时,从学生作答表现预测、认知状态评估、心理因素分析、习题序列分析和编程练习5个方面阐述认知跟踪模型的应用情景.最后,以经典的贝叶斯认知跟踪模型和深度认知跟踪模型为例分析了2类模型的优缺点,并探讨和展望认知跟踪模型未来可能的研究方向.
参考文献
相关文章 15
[1] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
[2] | 廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
[3] | 付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568. |
[4] | 古天龙, 冯旋, 李龙, 包旭光, 李云辉. 基于社会新闻数据集的伦理行为判别方法[J]. 计算机研究与发展, 2021, 58(2): 253-263. |
[5] | 陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280. |
[6] | 李金鹏, 张闯, 陈小军, 胡玥, 廖鹏程. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21. |
[7] | 孟子尧, 谷雪, 梁艳春, 许东, 吴春国. 深度神经架构搜索综述[J]. 计算机研究与发展, 2021, 58(1): 22-33. |
[8] | 朱泓睿, 元国军, 姚成吉, 谭光明, 王展, 户忠哲, 张晓扬, 安学军. 分布式深度学习训练网络综述[J]. 计算机研究与发展, 2021, 58(1): 98-115. |
[9] | 林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778. |
[10] | 李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. |
[11] | 胡超文, 邬昌兴, 杨亚连. 基于扩展的S-LSTM的文本蕴含识别[J]. 计算机研究与发展, 2020, 57(7): 1481-1489. |
[12] | 于海涛, 杨小汕, 徐常胜. 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020, 57(7): 1522-1530. |
[13] | 王庆林, 李东升, 梅松竹, 赖志权, 窦勇. 面向飞腾多核处理器的Winograd快速卷积算法优化[J]. 计算机研究与发展, 2020, 57(6): 1140-1151. |
[14] | 成科扬, 王宁, 师文喜, 詹永照. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217. |
[15] | 王子晔, 苗夺谦, 赵才荣, 罗晟, 卫志华. 基于多粒度特征的行人跟踪检测结合算法[J]. 计算机研究与发展, 2020, 57(5): 996-1002. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4308