(山西大学大数据科学与产业研究院 太原 030006) (计算智能与中文信息处理教育部重点实验室(山西大学) 太原 030006) (山西大学计算机与信息技术学院 太原 030006) (jietingwang@email.sxu.edu.cn)
出版日期:
2020-08-01基金资助:
国家自然科学基金项目(61672332);山西省三晋****支持计划项目;山西省回国留学人员科研项目(2017023)Support Vector Machine with Eliminating the Random Consistency
Wang Jieting, Qian Yuhua, Li Feijiang, Liu Guoqing(Institute of Big Data Science and Industry, Shanxi University, Taiyuan 030006) (Key Laboratory of Computational Intelligence and Chinese Information Processing (Shanxi University), Ministry of Education, Taiyuan 030006) (School of Computer and Information Technology, Shanxi University, Taiyuan 030006)
Online:
2020-08-01Supported by:
This work was supported by the National Natural Science Foundation of China (61672332), the Program for the San Jin Young Scholars of Shanxi, and the Overseas Returnee Research Program of Shanxi Province (2017023).摘要/Abstract
摘要: 在人类自身的学习过程中,对学习结果进行科学客观的评价与反馈是关键环节.通常,由于学习者的知识缺陷或证据不足使得学习过程存在随机性,进一步可能导致学习结果与实际情况产生随机一致性.对此结果的直接反馈将严重影响学习性能的提升.同样,机器学习是以数据为驱动、以目标为导向的学习系统.由于经验历史数据有限、不平衡、含噪音等特质导致学习结果具有随机一致性.然而,以准确度为反馈准则的机器学习系统无法辨识随机一致性,这会影响学习系统的泛化能力.首先给出随机准确度和纯准确度的定义,并且进一步分析消除随机准确度的意义及必要性.然后,基于纯准确度指标,提出消除随机一致性的支持向量机分类方法PASVM,并在KEEL数据集的10种不同领域的基准测试集上验证其有效性.实验结果表明:相比于SVM、SVMperf以及其他可用于优化纯准确度指标的学习方法,PASVM泛化性能有明显提高.
参考文献
相关文章 15
[1] | 刘颖, 杨轲. 基于深度集成学习的类极度不均衡数据信用欺诈检测算法[J]. 计算机研究与发展, 2021, 58(3): 539-547. |
[2] | 王继娜, 陈军华, 高建华. 基于排序损失的ECC多标签代码异味检测方法[J]. 计算机研究与发展, 2021, 58(1): 178-188. |
[3] | 陈善静, 向朝参, 康青, 吴韬, 刘凯, 冯亮, 邓涛. 基于多源遥感时空谱特征融合的滑坡灾害检测方法[J]. 计算机研究与发展, 2020, 57(9): 1877-1887. |
[4] | 鞠卓亚, 王志海. 基于选择性模式的贝叶斯分类算法[J]. 计算机研究与发展, 2020, 57(8): 1605-1616. |
[5] | 邢新颖, 冀俊忠, 姚垚. 基于自适应多任务卷积神经网络的脑网络分类方法[J]. 计算机研究与发展, 2020, 57(7): 1449-1459. |
[6] | 刘烨, 黄金筱, 马于涛. 基于混合神经网络和注意力机制的软件缺陷自动分派方法[J]. 计算机研究与发展, 2020, 57(3): 461-473. |
[7] | 沈明珠, 刘辉. 面向技术论坛的问题解答状态预测[J]. 计算机研究与发展, 2020, 57(3): 474-486. |
[8] | 程光, 钱德鑫, 郭建伟, 史海滨, 吴桦, 赵玉宇. 基于散度的网络流概念漂移分类方法[J]. 计算机研究与发展, 2020, 57(12): 2673-2682. |
[9] | 张晨童, 张佳影, 张知行, 阮彤, 何萍, 葛小玲. 融合常用语的大规模疾病术语图谱构建[J]. 计算机研究与发展, 2020, 57(11): 2467-2477. |
[10] | 宋珂慧,张莹,张江伟,袁晓洁. 基于生成式对抗网络的结构化数据表生成模型[J]. 计算机研究与发展, 2019, 56(9): 1832-1842. |
[11] | 张佳影,王祺,张知行,阮彤,张欢欢,何萍. 区域医疗健康平台中检验检查指标的标准化算法[J]. 计算机研究与发展, 2019, 56(9): 1897-1906. |
[12] | 任婕,侯博建,姜远. 多示例学习下的深度森林架构[J]. 计算机研究与发展, 2019, 56(8): 1670-1676. |
[13] | 苏锦钿,欧阳志凡,余珊珊. 基于依存树及距离注意力的句子属性情感分类[J]. 计算机研究与发展, 2019, 56(8): 1731-1745. |
[14] | 张志昌,张珍文,张治满. 基于IndRNN-Attention的用户意图分类[J]. 计算机研究与发展, 2019, 56(7): 1517-1524. |
[15] | 肖珂,戴舜,何云华,孙利民. 基于城市监控的自然场景图像的中文文本提取方法[J]. 计算机研究与发展, 2019, 56(7): 1525-1533. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4228