删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

消除随机一致性的支持向量机分类方法

本站小编 Free考研考试/2022-01-01

王婕婷,钱宇华,李飞江,刘郭庆
(山西大学大数据科学与产业研究院 太原 030006) (计算智能与中文信息处理教育部重点实验室(山西大学) 太原 030006) (山西大学计算机与信息技术学院 太原 030006) (jietingwang@email.sxu.edu.cn)
出版日期: 2020-08-01


基金资助:国家自然科学基金项目(61672332);山西省三晋****支持计划项目;山西省回国留学人员科研项目(2017023)

Support Vector Machine with Eliminating the Random Consistency

Wang Jieting, Qian Yuhua, Li Feijiang, Liu Guoqing
(Institute of Big Data Science and Industry, Shanxi University, Taiyuan 030006) (Key Laboratory of Computational Intelligence and Chinese Information Processing (Shanxi University), Ministry of Education, Taiyuan 030006) (School of Computer and Information Technology, Shanxi University, Taiyuan 030006)
Online: 2020-08-01


Supported by:This work was supported by the National Natural Science Foundation of China (61672332), the Program for the San Jin Young Scholars of Shanxi, and the Overseas Returnee Research Program of Shanxi Province (2017023).




摘要/Abstract


摘要: 在人类自身的学习过程中,对学习结果进行科学客观的评价与反馈是关键环节.通常,由于学习者的知识缺陷或证据不足使得学习过程存在随机性,进一步可能导致学习结果与实际情况产生随机一致性.对此结果的直接反馈将严重影响学习性能的提升.同样,机器学习是以数据为驱动、以目标为导向的学习系统.由于经验历史数据有限、不平衡、含噪音等特质导致学习结果具有随机一致性.然而,以准确度为反馈准则的机器学习系统无法辨识随机一致性,这会影响学习系统的泛化能力.首先给出随机准确度和纯准确度的定义,并且进一步分析消除随机准确度的意义及必要性.然后,基于纯准确度指标,提出消除随机一致性的支持向量机分类方法PASVM,并在KEEL数据集的10种不同领域的基准测试集上验证其有效性.实验结果表明:相比于SVM、SVMperf以及其他可用于优化纯准确度指标的学习方法,PASVM泛化性能有明显提高.






[1]刘颖, 杨轲. 基于深度集成学习的类极度不均衡数据信用欺诈检测算法[J]. 计算机研究与发展, 2021, 58(3): 539-547.
[2]王继娜, 陈军华, 高建华. 基于排序损失的ECC多标签代码异味检测方法[J]. 计算机研究与发展, 2021, 58(1): 178-188.
[3]陈善静, 向朝参, 康青, 吴韬, 刘凯, 冯亮, 邓涛. 基于多源遥感时空谱特征融合的滑坡灾害检测方法[J]. 计算机研究与发展, 2020, 57(9): 1877-1887.
[4]鞠卓亚, 王志海. 基于选择性模式的贝叶斯分类算法[J]. 计算机研究与发展, 2020, 57(8): 1605-1616.
[5]邢新颖, 冀俊忠, 姚垚. 基于自适应多任务卷积神经网络的脑网络分类方法[J]. 计算机研究与发展, 2020, 57(7): 1449-1459.
[6]刘烨, 黄金筱, 马于涛. 基于混合神经网络和注意力机制的软件缺陷自动分派方法[J]. 计算机研究与发展, 2020, 57(3): 461-473.
[7]沈明珠, 刘辉. 面向技术论坛的问题解答状态预测[J]. 计算机研究与发展, 2020, 57(3): 474-486.
[8]程光, 钱德鑫, 郭建伟, 史海滨, 吴桦, 赵玉宇. 基于散度的网络流概念漂移分类方法[J]. 计算机研究与发展, 2020, 57(12): 2673-2682.
[9]张晨童, 张佳影, 张知行, 阮彤, 何萍, 葛小玲. 融合常用语的大规模疾病术语图谱构建[J]. 计算机研究与发展, 2020, 57(11): 2467-2477.
[10]宋珂慧,张莹,张江伟,袁晓洁. 基于生成式对抗网络的结构化数据表生成模型[J]. 计算机研究与发展, 2019, 56(9): 1832-1842.
[11]张佳影,王祺,张知行,阮彤,张欢欢,何萍. 区域医疗健康平台中检验检查指标的标准化算法[J]. 计算机研究与发展, 2019, 56(9): 1897-1906.
[12]任婕,侯博建,姜远. 多示例学习下的深度森林架构[J]. 计算机研究与发展, 2019, 56(8): 1670-1676.
[13]苏锦钿,欧阳志凡,余珊珊. 基于依存树及距离注意力的句子属性情感分类[J]. 计算机研究与发展, 2019, 56(8): 1731-1745.
[14]张志昌,张珍文,张治满. 基于IndRNN-Attention的用户意图分类[J]. 计算机研究与发展, 2019, 56(7): 1517-1524.
[15]肖珂,戴舜,何云华,孙利民. 基于城市监控的自然场景图像的中文文本提取方法[J]. 计算机研究与发展, 2019, 56(7): 1525-1533.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4228
相关话题/计算机 数据 山西大学 系统 网络

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 一种度修正的属性网络随机块模型
    郑忆美1,2,贾彩燕1,2,常振海3,李轩涯41(北京交通大学计算机与信息技术学院北京100044);2(交通数据分析与挖掘北京市重点实验室(北京交通大学)北京100044);3(天水师范学院数学与统计学院甘肃天水741000);4(百度在线网络技术(北京)有限公司北京100085)(ymzheng ...
    本站小编 Free考研考试 2022-01-01
  • 基于随机投影的高维数据流聚类
    朱颖雯1,2,3,陈松灿1,21(南京航空航天大学计算机科学与技术学院南京211106);2(模式分析与机器智能工业和信息化部重点实验室(南京航空航天大学)南京211106);3(三江学院计算机科学与工程学院南京210012)(yingwen.zhu@nuaa.edu.cn)出版日期:2020-08 ...
    本站小编 Free考研考试 2022-01-01
  • 基于复合关系图卷积的属性网络嵌入方法
    陈亦琦,钱铁云,李万理,梁贻乐(武汉大学计算机学院武汉430072)(yiqic16@whu.edu.cn)出版日期:2020-08-01基金资助:国家自然科学基金项目(61572376,91646206);国家电网有限公司科技项目(5700-202072180A-0-00-00)Exploitin ...
    本站小编 Free考研考试 2022-01-01
  • Twitter社交网络用户行为理解及个性化服务推荐算法研究
    于亚新,刘梦,张宏宇(东北大学计算机科学与工程学院沈阳110169)(医学影像智能计算教育部重点实验室(东北大学)沈阳110169)(yuyx@mail.neu.edu.cn)出版日期:2020-07-01基金资助:国家自然科学基金项目(61871106,61973059);国家重点研发计划项目(2 ...
    本站小编 Free考研考试 2022-01-01
  • 基于自适应多任务卷积神经网络的脑网络分类方法
    邢新颖,冀俊忠,姚垚(北京工业大学信息学部计算机学院北京100124)(xinying.xing@emails.bjut.edu.cn)出版日期:2020-07-01基金资助:国家自然科学基金项目(61672065)BrainNetworksClassificationBasedonanAdapti ...
    本站小编 Free考研考试 2022-01-01
  • 一种基于智能手机传感器数据的地图轮廓生成方法
    陶涛1,孙玉娥2,5,陈冬梅1,杨文建1,黄河1,3,罗永龙4,51(苏州大学计算机科学与技术学院江苏苏州215006);2(苏州大学轨道交通学院江苏苏州215131);3(中国科学技术大学苏州研究院江苏苏州215123);4(安徽师范大学计算机与信息学院安徽芜湖241002);5(网络与信息安全安 ...
    本站小编 Free考研考试 2022-01-01
  • 适应立体匹配任务的端到端深度网络
    李曈1,马伟1,徐士彪2,张晓鹏21(北京工业大学信息学部北京100124);2(中国科学院自动化研究所北京100190)(772402345@qq.com)出版日期:2020-07-01基金资助:国家自然科学基金项目(61771026,61671451);模式识别国家重点实验室开放课题基金Task ...
    本站小编 Free考研考试 2022-01-01
  • 计算机体系结构前沿技术2020专题前言
    刘志勇1,窦勇21(中国科学院计算技术研究所北京100190);2(国防科技大学长沙410073)出版日期:2020-06-01Online:2020-06-01摘要/Abstract摘要:我们高兴地向读者推出本刊“计算机体系结构前沿技术”专题!本专题收录的6篇文章既包含不同技术领域和方向的综述,也 ...
    本站小编 Free考研考试 2022-01-01
  • 基于Spark的大数据访存行为跨层分析工具
    许丹亚1,王晶1,2,王利3,张伟功2,31(首都师范大学信息工程学院北京100048);2(高可靠嵌入式技术北京市工程研究中心(首都师范大学)北京100048);3(北京成像理论与技术高精尖创新中心(首都师范大学)北京100048)(xudanya@cnu.edu.cn)出版日期:2020-06- ...
    本站小编 Free考研考试 2022-01-01
  • 面向高通量计算机的图算法优化技术
    张承龙1,2,曹华伟1,王国波1,2,郝沁汾1,张洋1,叶笑春1,范东睿1,21(计算机体系结构国家重点实验室(中国科学院计算技术研究所)北京100190);2(中国科学院大学计算机与控制学院北京100049)(caohuawei@ict.ac.cn)出版日期:2020-06-01基金资助:国家重点 ...
    本站小编 Free考研考试 2022-01-01