1(北京交通大学计算机与信息技术学院 北京 100044);2(32178部队 北京 100012) (juzhuoya@bjtu.edu.cn)
出版日期:
2020-08-01基金资助:
国家自然科学基金项目(61672086);北京市自然科学基金项目(4182052)A Bayesian Classification Algorithm Based on Selective Patterns
Ju Zhuoya1,2, Wang Zhihai11(School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044);2(Unit 32178, Beijing 100012)
Online:
2020-08-01Supported by:
This work was supported by the National Natural Science Foundation of China (61672086) and the Beijing Natural Science Foundation (4182052).摘要/Abstract
摘要: 分类问题是数据挖掘的一个重要研究课题.朴素贝叶斯分类器是分类问题中一种简单高效的分类学习技术.该分类器假定给定类标时属性之间相互条件独立,然而现实中属性之间往往具有一定的依赖关系.“属性-值”序偶构成的模式在分类问题中具有关键作用,许多研究者利用这种特定模式构造分类器,而特定模式所包含的属性与其他属性之间的依赖关系,将对分类结果产生重要影响.通过对属性间的依赖关系进行深入研究,提出基于选择性模式的贝叶斯分类算法,既利用了基于贝叶斯网络分类器的优秀分类能力,又通过进一步分析模式中属性之间的依赖关系,削弱了属性条件独立假设的限制.实验证明:根据数据集特点,深入挖掘高区分能力的模式,合理构建属性之间的依赖关系,有助于提升分类精度.实验分析表明:与基准算法NB,AODE相比,提出的分类算法在10个数据集上的平均精度分别提升了1.65%和4.29%.
参考文献
相关文章 15
[1] | 王继娜, 陈军华, 高建华. 基于排序损失的ECC多标签代码异味检测方法[J]. 计算机研究与发展, 2021, 58(1): 178-188. |
[2] | 王婕婷, 钱宇华, 李飞江, 刘郭庆. 消除随机一致性的支持向量机分类方法[J]. 计算机研究与发展, 2020, 57(8): 1581-1593. |
[3] | 邢新颖, 冀俊忠, 姚垚. 基于自适应多任务卷积神经网络的脑网络分类方法[J]. 计算机研究与发展, 2020, 57(7): 1449-1459. |
[4] | 刘烨, 黄金筱, 马于涛. 基于混合神经网络和注意力机制的软件缺陷自动分派方法[J]. 计算机研究与发展, 2020, 57(3): 461-473. |
[5] | 沈明珠, 刘辉. 面向技术论坛的问题解答状态预测[J]. 计算机研究与发展, 2020, 57(3): 474-486. |
[6] | 程光, 钱德鑫, 郭建伟, 史海滨, 吴桦, 赵玉宇. 基于散度的网络流概念漂移分类方法[J]. 计算机研究与发展, 2020, 57(12): 2673-2682. |
[7] | 张晨童, 张佳影, 张知行, 阮彤, 何萍, 葛小玲. 融合常用语的大规模疾病术语图谱构建[J]. 计算机研究与发展, 2020, 57(11): 2467-2477. |
[8] | 宋珂慧,张莹,张江伟,袁晓洁. 基于生成式对抗网络的结构化数据表生成模型[J]. 计算机研究与发展, 2019, 56(9): 1832-1842. |
[9] | 张佳影,王祺,张知行,阮彤,张欢欢,何萍. 区域医疗健康平台中检验检查指标的标准化算法[J]. 计算机研究与发展, 2019, 56(9): 1897-1906. |
[10] | 任婕,侯博建,姜远. 多示例学习下的深度森林架构[J]. 计算机研究与发展, 2019, 56(8): 1670-1676. |
[11] | 苏锦钿,欧阳志凡,余珊珊. 基于依存树及距离注意力的句子属性情感分类[J]. 计算机研究与发展, 2019, 56(8): 1731-1745. |
[12] | 张志昌,张珍文,张治满. 基于IndRNN-Attention的用户意图分类[J]. 计算机研究与发展, 2019, 56(7): 1517-1524. |
[13] | 彭成维,云晓春,张永铮,李书豪. 一种基于域名请求伴随关系的恶意域名检测方法[J]. 计算机研究与发展, 2019, 56(6): 1263-1274. |
[14] | 刘琳,唐麟,唐明靖,周维. 基于布尔矩阵分解的蛋白质功能预测框架[J]. 计算机研究与发展, 2019, 56(5): 1020-1033. |
[15] | 张祥文,陆紫耀,杨静,林倩,卢宇,王鸿吉,苏劲松. 基于带权词格的循环神经网络句子语义表示建模[J]. 计算机研究与发展, 2019, 56(4): 854-865. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4230