1(智能信息处理重点实验室(中国科学院计算技术研究所) 北京 100190);2(中国科学院大学计算机科学与技术学院 北京 100049);3(数字视频编解码技术国家工程实验室(北京大学) 北京 100871) (junbao.zhuo@vipl.ict.ac.cn)
出版日期: 2020-04-01基金资助:国家自然科学基金项目(61672497,U163621);国家“九七三”重点基础研究发展计划基金项目(2015CB351802);中国科学院前沿科学重点研究项目(QYZDJ-SSW-SYS013)Min-Entropy Transfer Adversarial Hashing
Zhuo Junbao1,2, Su Chi3, Wang Shuhui1, Huang Qingming1,21(Key Laboratory of Intelligent Information Process (Institute of Computing Technology, Chinese Academy of Sciences), Beijing 100190);2(School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049);3(National Engineering Laboratory for Video Technology (Peking University), Ministry of Education, Beijing 100871)
Online: 2020-04-01Supported by:This work was supported by the National Natural Science Foundation of China (61672497, U163621), the National Basic Research Program of China (973 Program) (2015CB351802), and the Key Research Program of Frontier Sciences of CAS (QYZDJ-SSW-SYS013).摘要/Abstract
摘要: 散列算法具有高效的存储和查询特性,被广泛应用于大规模的图像检索.大多数现有的深度散列方法都基于独立同分布的假设,即训练集(源域)和测试集(目标域)的分布一致.然而在现实应用中,源域和目标域往往存在较大的差异,即跨域检索.因此有些研究工作开始将跨域识别的方法引入到跨域检索中,以增强所学散列函数的泛化性.现有跨域检索方法仍存在散列码的判别力不足和域不变能力不足2个问题.提出语义保持模块和最小熵损失来解决这2个问题.语义保持模块是1个分类子网络,该模块可以充分利用源域的类别标注信息,并将该语义信息传递给散列学习子网络使得学习到的散列码包含更多的语义信息,即增强判别力.此外,对于无标注的目标域,熵表征目标域样本的分类响应的集中程度,理想的散列码经过语义保持模块后得到的分类响应应该集中于某一个类别,即最小熵状态.引入最小熵损失促使目标域样本与源域样本在类别响应这一空间上分布更加对齐,进而使得散列码更具域不变性.通过引入语义保持模块和最小熵损失,在现有方法的基础上构建了端到端的跨域检索网络,并在2个数据集上进行了大量实验,与领域内现有主要模型进行了详尽的对比,实验证明所提模型取得了更优的性能.
参考文献
相关文章 15
| [1] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
| [2] | 廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
| [3] | 付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568. |
| [4] | 古天龙, 冯旋, 李龙, 包旭光, 李云辉. 基于社会新闻数据集的伦理行为判别方法[J]. 计算机研究与发展, 2021, 58(2): 253-263. |
| [5] | 陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280. |
| [6] | 李金鹏, 张闯, 陈小军, 胡玥, 廖鹏程. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21. |
| [7] | 孟子尧, 谷雪, 梁艳春, 许东, 吴春国. 深度神经架构搜索综述[J]. 计算机研究与发展, 2021, 58(1): 22-33. |
| [8] | 朱泓睿, 元国军, 姚成吉, 谭光明, 王展, 户忠哲, 张晓扬, 安学军. 分布式深度学习训练网络综述[J]. 计算机研究与发展, 2021, 58(1): 98-115. |
| [9] | 林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778. |
| [10] | 李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. |
| [11] | 胡超文, 邬昌兴, 杨亚连. 基于扩展的S-LSTM的文本蕴含识别[J]. 计算机研究与发展, 2020, 57(7): 1481-1489. |
| [12] | 于海涛, 杨小汕, 徐常胜. 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020, 57(7): 1522-1530. |
| [13] | 王庆林, 李东升, 梅松竹, 赖志权, 窦勇. 面向飞腾多核处理器的Winograd快速卷积算法优化[J]. 计算机研究与发展, 2020, 57(6): 1140-1151. |
| [14] | 成科扬, 王宁, 师文喜, 詹永照. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217. |
| [15] | 王子晔, 苗夺谦, 赵才荣, 罗晟, 卫志华. 基于多粒度特征的行人跟踪检测结合算法[J]. 计算机研究与发展, 2020, 57(5): 996-1002. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4168
