删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

面向技术论坛的问题解答状态预测

本站小编 Free考研考试/2022-01-01

沈明珠,刘辉
(北京理工大学计算机学院 北京 100081) (3120181025@bit.edu.cn)
出版日期: 2020-03-01


基金资助:国家自然科学基金重大项目(61690205)

Status Prediction for Questions Post on Technical Forums

Shen Mingzhu, Liu Hui
(School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081)
Online: 2020-03-01


Supported by:This work was supported by the Major Program of the National Natural Science Foundation of China (61690205).




摘要/Abstract


摘要: 当遭遇技术问题时,开发人员往往会在Stack Overflow等技术论坛上发布问题并等待回答.此类QA系统也是基于互联网的群智化软件开发的一个重要表现形式.但是论坛上提出的问题并不一定能够获得满意答案.因此,提出问题并被动地等待答案并不总是最佳策略.为此,提出了一种基于深度神经网络的方法以自动预测问题能否获得满意答案.提前预知问题能否及时获得有效答复,开发人员可以提前规划应对策略.该方法不仅充分利用了问题本身的文本信息,也将提问人员相关内容作为预测的主要依据.利用最新的深度学习技术,充分挖掘输入特征与问题解答状态之间的内在关联关系.在Stack Overflow提供的数据集上的实验结果表明:所提出的方法能够预测问题的解答情况,结果显示在预测问题是否有满意答案的查准率为58.87%、查全率为46.68%(随机猜测的查准率为38.77%,查全率为35.26%),并优于机器学习KNN和浅层神经网络FastText.






[1]吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527.
[2]廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538.
[3]付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568.
[4]古天龙, 冯旋, 李龙, 包旭光, 李云辉. 基于社会新闻数据集的伦理行为判别方法[J]. 计算机研究与发展, 2021, 58(2): 253-263.
[5]陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280.
[6]李金鹏, 张闯, 陈小军, 胡玥, 廖鹏程. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21.
[7]孟子尧, 谷雪, 梁艳春, 许东, 吴春国. 深度神经架构搜索综述[J]. 计算机研究与发展, 2021, 58(1): 22-33.
[8]朱泓睿, 元国军, 姚成吉, 谭光明, 王展, 户忠哲, 张晓扬, 安学军. 分布式深度学习训练网络综述[J]. 计算机研究与发展, 2021, 58(1): 98-115.
[9]林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778.
[10]李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448.
[11]胡超文, 邬昌兴, 杨亚连. 基于扩展的S-LSTM的文本蕴含识别[J]. 计算机研究与发展, 2020, 57(7): 1481-1489.
[12]于海涛, 杨小汕, 徐常胜. 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020, 57(7): 1522-1530.
[13]王庆林, 李东升, 梅松竹, 赖志权, 窦勇. 面向飞腾多核处理器的Winograd快速卷积算法优化[J]. 计算机研究与发展, 2020, 57(6): 1140-1151.
[14]成科扬, 王宁, 师文喜, 詹永照. 深度学习可解释性研究进展[J]. 计算机研究与发展, 2020, 57(6): 1208-1217.
[15]王子晔, 苗夺谦, 赵才荣, 罗晟, 卫志华. 基于多粒度特征的行人跟踪检测结合算法[J]. 计算机研究与发展, 2020, 57(5): 996-1002.





PDF全文下载地址:

https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=4136
相关话题/计算机 技术 数据 电子 规划