1(广东石油化工学院计算机科学与技术系 广东茂名 525000); 2(苏州大学计算机科学与技术学院 江苏苏州 215000) (chenke2001@163.com)
出版日期:
2018-05-01基金资助:
国家自然科学基金项目(61272382,61672174);广东省自然科学基金项目(2016A030307049,2016A030307028);广东省科技计划项目(2014A010104016,2015B090903084)Chinese Micro-Blog Sentiment Analysis Based on Multi-Channels Convolutional Neural Networks
Chen Ke1, Liang Bin2, Ke Wende1, Xu Bo1,Zeng Guochao11(Department of Computer Science and Technology, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000); 2(School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215000)
Online:
2018-05-01摘要/Abstract
摘要: 近年来,深度学习在情感分析任务中的应用得到了越来越多的关注.针对以文本词向量作为输入的卷积神经网络无法充分利用情感分析任务中特有的情感特征信息,以及难以有效表示每个词语在句子中的重要程度等问题,提出一种基于多通道卷积神经网络(multi-channels convolutional neural networks, MCCNN)的中文微博情感分析模型.该模型针对情感分析任务中特有的情感信息来构建文本输入矩阵,使模型在训练过程中有效获取输入句子的情感特征信息.同时,该模型通过将不同特征信息结合形成不同的网络输入通道,使网络模型在训练过程中从多方面的特征表示来学习输入句子的情感信息,有效表示出每个词语在句子中的重要程度,获取更多的隐藏信息.最后在COAE2014数据集和微博语料数据上进行实验,取得了比普通卷积神经网络、结合情感信息的卷积神经网络和传统分类器更好的性能.
参考文献
相关文章 15
[1] | 吴宗友, 白昆龙, 杨林蕊, 王仪琦, 田英杰. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527. |
[2] | 廖海斌, 徐斌. 基于性别和年龄因子分析的鲁棒性人脸表情识别[J]. 计算机研究与发展, 2021, 58(3): 528-538. |
[3] | 付章杰, 李恩露, 程旭, 黄永峰, 胡雨婷. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568. |
[4] | 古天龙, 冯旋, 李龙, 包旭光, 李云辉. 基于社会新闻数据集的伦理行为判别方法[J]. 计算机研究与发展, 2021, 58(2): 253-263. |
[5] | 陈晋音, 陈奕芃, 陈一鸣, 郑海斌, 纪守领, 时杰, 程瑶. 面向深度学习的公平性研究综述[J]. 计算机研究与发展, 2021, 58(2): 264-280. |
[6] | 李金鹏, 张闯, 陈小军, 胡玥, 廖鹏程. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21. |
[7] | 孟子尧, 谷雪, 梁艳春, 许东, 吴春国. 深度神经架构搜索综述[J]. 计算机研究与发展, 2021, 58(1): 22-33. |
[8] | 朱泓睿, 元国军, 姚成吉, 谭光明, 王展, 户忠哲, 张晓扬, 安学军. 分布式深度学习训练网络综述[J]. 计算机研究与发展, 2021, 58(1): 98-115. |
[9] | 曾碧卿, 曾锋, 韩旭丽, 商齐. 基于交互特征表示的评价对象抽取模型[J]. 计算机研究与发展, 2021, 58(1): 224-232. |
[10] | 林培光, 周佳倩, 温玉莲. SCONV:一种基于情感分析的金融市场趋势预测方法[J]. 计算机研究与发展, 2020, 57(8): 1769-1778. |
[11] | 李若南, 李金宝. 一种无源被动室内区域定位方法的研究[J]. 计算机研究与发展, 2020, 57(7): 1381-1392. |
[12] | 李冬梅, 张扬, 李东远, 林丹琼. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448. |
[13] | 邢新颖, 冀俊忠, 姚垚. 基于自适应多任务卷积神经网络的脑网络分类方法[J]. 计算机研究与发展, 2020, 57(7): 1449-1459. |
[14] | 胡超文, 邬昌兴, 杨亚连. 基于扩展的S-LSTM的文本蕴含识别[J]. 计算机研究与发展, 2020, 57(7): 1481-1489. |
[15] | 于海涛, 杨小汕, 徐常胜. 基于多模态输入的对抗式视频生成方法[J]. 计算机研究与发展, 2020, 57(7): 1522-1530. |
PDF全文下载地址:
https://crad.ict.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=3684