摘要:利用现场观测资料、OAFlux的湍流热通量,评估了JOFURO(Japanese Ocean Flux Data Sets with use of Remote Sensing Observations)、HOAPS-2(Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data version 2)、GSSTF-2(Goddard Satellite-Based Surface Turbulent Fluxes version 2)3种卫星资料在南海区域的表现。3套卫星资料可以说各有千秋,总体而言JOFURO和GSSTF-2资料的空间分布和时间变化与OAFlux资料整体上较一致,但是这两套资料都在很大程度上低估了海盆平均的潜热和感热,前者低估约10%~20%,后者则可以达到50%以上。HOAPS-2资料与现场观测资料有较好的一致性,但在时间变化上和其他资料的差异则较大,特别是感热方面,季节变化振幅、年际变化位相等都与其他资料不一致。通过比较我们发现,海南岛周边以及南海南部区域估算的潜热和感热释放偏小是造成整体偏小的主要原因。
关键词:卫星遥感/
湍流热通量/
潜热通量/
感热通量/
南海
Abstract:In this study, in situ observations of turbulent heat flux and the OAFlux data are compared with three satellite-derived datasets, i.e., JOFURO (Japanese Ocean Flux Data Sets with use of Remote Sensing Observations), HOAPS-2 (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite data version 2), and GSSTF-2 (Goddard Satellite-Based Surface Turbulent Fluxes version 2), in the South China Sea (SCS). The three satellite-derived datasets have different features. In general, the spatial distributions and temporal variabilities of JOFURO and GSSTF-2 data are consistent with those of the OAFlux data. However, these two datasets largely underestimate the average latent and sensible heat fluxes over the entire basin. The former underestimates the heat fluxes by 10%-20% and the underestimation in the latter can reach up to more than 50%. The HOAPS-2 data are consistent with the in situ data, but there exist distinct differences in the temporal variability when compared with other datasets, especially the amplitude of seasonal variation and the phase of interannual variation in the sensible heat flux. The comparison reveals that the underestimation of the latent and sensible heat fluxes in the vicinity of Hainan Island and the southern SCS is the main reason for the underestimation in the entire SCS basin.
Key words:Satellite remote sensing/
Turbulent heat flux/
Latent heat flux/
Sensible heat flux/
South China Sea
PDF全文下载地址:
http://www.iapjournals.ac.cn/qhhj/article/exportPdf?id=20180308