1. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2. School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, Henan, China
Received 23 December 2019; Revised 2 March 2020
Foundation items: Supported by the National Nature Science Foundation of China (11871452), Project of Henan Provincial Department of Education (18A110028), and the Nanhu Scholar Program for Young Scholars of Xinyang Normal University
Corresponding author: WEI Mingquan, E-mail: weimingquan11@mails.ucas.ac.cn
Abstract: In this paper, we calculate the norm of the Hausdorff operator $\mathscr{H}_Φ$ defined on the Morrey space with power weights Lp, λ($\mathbb{R}^n$, |x|αdx) and the homogeneous central Morrey space with power weights $\dot B$p, λ($\mathbb{R}^n$, |x|αdx), respectively. We also extend our results to the product Hausdorff operator $\mathscr{H}$Φm.
Keywords: Hausdorff operatorproduct Hausdorff operatorMorrey space
带幂权Morrey空间上Hausdorff算子的最佳界
张兴松1, 魏明权2, 燕敦验1
1. 中国科学院大学数学科学学院, 北京 100049;
2. 信阳师范学院数学与统计学院, 河南信阳 464000
摘要: 分别得到定义在带幂权Morrey空间Lp, λ($\mathbb{R}^n$,|x|αdx)和带幂权齐次中心Morrey空间$\dot B$p, λ($\mathbb{R}^n$,|x|αdx)上的Hausdorff算子$\mathscr{H}_Φ$的范数.并把这些结果推广到乘积Hausdorff算子$\mathscr{H}$Φm.
关键词: Hausdorff算子乘积Hausdorff算子Morrey空间
Hausdorff operator[1] was first introduced in 1917. As is well known, the Hausdorff operator includes many famous operators such as Hardy operator, adjoint Hardy operator, Cesaro operator and Hardy-Littlewood-Polya operator (see the examples below). Especially, Hardy operator as a kind of very important average operator is widely studied by many mathematicians. Researchers have built a relatively complete and mature theory about Hardy operator. Naturally, an in-depth study on Hausdorff operator is of great significance. In the recent years, Hausdorff operator and its variations have been widely studied by many researchers. For example, Chen et al.[2-3] considered the boundedness properties of Hausdorff operator on Euclidean spaces, such as the Lebesgue spaces Lp, the Hardy spaces Hp and the Herz type spaces. For the sake of convenience, one can refer to Refs. [4-8] for more details of the recent progress on Hausdorff operators. In 2015, Gao et al.[9] studied the boundness properties of the (fractional) Hausdorff operators on the Lebesgue spaces Lp with powers. It is the starting point of our research.
1 Preliminaries and main resultsWe first recall the classical one-dimensional Hausdorff operator. For a function ? defined on
$h_{\phi}(f)(x)=\int_{0}^{\infty} \frac{\phi(y)}{y} f\left(\frac{x}{y}\right) \mathrm{d} y, \quad x \in \mathbb{R}.$ |
$\begin{aligned}&h_{\phi}(f)(x)= \\&\left\{\begin{array}{l}\frac{1}{x} \int_{0}^{x} f(y) \mathrm{d} y, x \neq 0, \text { if } \phi(y)=\frac{\chi_{(1, \infty)}(y)}{y} ; \\\int_{x}^{\infty} \frac{f(y)}{y} \mathrm{~d} y, \text { if } \phi(y)=\chi_{(0,1)}(y) ; \\\int_{0}^{1} \frac{(1-y)^{\delta-1}}{y} f\left(y^{-1} x\right) \mathrm{d} y, \text { if } \phi(y)=\frac{\chi_{(0,1)}(y)}{(1-y)^{-\delta}}; \\\int_{0}^{\infty} \frac{f(y)}{\max (y, x)} \mathrm{d} y, \text { if } \phi(y)=\chi_{(0,1)}(y)+\frac{\chi_{(1, \infty)}(y)}{y}.\end{array}\right.\end{aligned}$ |
High-dimensional Hausdorff operators have several versions (see Refs. [2, 4, 6]). In 2003, Anderson[10] studied the n-dimensonal Hausdorff operator
$H_{\Phi} f(x)=\int_{\mathbb{R}^{n}} \frac{\Phi(x /|y|)}{|y|^{n}} f(y) \mathrm{d} y,$ |
In this paper we will consider the following n-dimensional Hausdorff operator. Give a nonnegative function Φ defined on
$\mathscr{H}_{\Phi} f(x)=\int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n}} f\left(\frac{x}{|y|}\right) \mathrm{d} y.$ |
Before stating our main results, we give some ordinary notations as follows. For a∈
Definition 1.1??Let 1≤p < ∞, -1/p≤λ < 0, ω=ω(x)=|x|α and α≥0. The Morrey space with power weights Lp, λ(
$\begin{aligned}&L^{p, \lambda}\left(\mathbb{R}^{n},|x|{ }^{\alpha} \mathrm{d} x\right) \\&:=\left\{f \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n},|x|{ }^{\alpha} \mathrm{d} x\right):\right. \\&\left.\quad\|f\|_{L^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right)}<+\infty\right\},\end{aligned}$ |
$\begin{aligned}&\|f\|_{L^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right)}= \\&\sup \limits_{a \in \mathbb{R}^{n}, R>0}\left(\frac{1}{\omega(Q(a, R))^{1+p \lambda}} \int_{Q(a, R)}|f(x)|^{p}|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} .\end{aligned}$ |
$\begin{aligned}&\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|{ }^{\alpha} \mathrm{d} x\right) \\&:=\left\{f \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right):\|f\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right)}<+\infty\right\},\end{aligned}$ |
$\begin{aligned}&\|f\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d}x\right)}= \\&\sup \limits_{R>0}\left(\frac{1}{\omega(B(0, R))^{1+p \lambda}} \int_{B(0, R)}|f(x)|^{p}|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} .\end{aligned}$ |
Theorem 1.1??Let 1≤p < ∞, -1/p≤λ < 0 and α≥0. Then
$C:=\int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n+(\alpha+n) \lambda}} \mathrm{d} y<\infty.$ |
However, when we consider the boundedness of
Theorem 1.2??Let 1≤p < ∞, -1/p≤λ < 0 and α≥0. Then
$C:=\int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n+(\alpha+n) \lambda}} \mathrm{d} y<\infty.$ |
$C:=\int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n+n\lambda}} \mathrm{d} y<\infty.$ |
Our results can be extended to product spaces. Let m, ni∈${\mathbb{N}}^ + $, 1≤i≤m. Φ(y1, …, ym) is a nonnegative function defined on
$\begin{aligned}\mathscr{H}_{\Phi}^{m}(f)\left(x_{1}, \cdots, x_{m}\right)= \int_{\mathbb{R}^{n_1}} \ldots \int_{\mathbb{R}^{n_m}} \frac{\Phi\left(y_{1}, \cdots, y_{m}\right)}{\left|y_{1}\right|^{n_{1}} \cdots\left|y_{m}\right|^{n_{m}}} \times \\& f\left(\frac{x_{1}}{\left|y_{1}\right|}, \cdots, \frac{x_{m}}{\left|y_{m}\right|}\right) \mathrm{d} y_{1} \cdots \mathrm{d} y_{m},\end{aligned}$ |
For the sake of convenience, we use the following notations.
Let n =(n1, …, nm),
Correspondingly, we define the product Morrey spaces with power weights.
Definition 1.3??Let 1≤p < ∞, m∈
$\begin{aligned}&L^{p, \boldsymbol{\lambda}}\left(\mathbb{R}^{\boldsymbol{n}},|x|^{\boldsymbol{\alpha}} \mathrm{d} x\right) \\&:=\left\{f \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{\boldsymbol{n}},|x|^{\boldsymbol{\alpha}} \mathrm{d} x\right):\|f\|_{L^{p, \boldsymbol{\lambda}}\left(\mathbb{R}^{\boldsymbol{n}},|x|^{\boldsymbol{\alpha}} \mathrm{d} x\right)}\right. \\& \ \ \ \ \ \ <+\boldsymbol{\infty}\},\end{aligned}$ |
$\begin{aligned}&{\|f\|_{L^{p, \boldsymbol{\lambda}}\left(\mathbb{R}^{\boldsymbol{n}},|x| ^{\boldsymbol{\alpha}}{\mathrm{d}x}\right)}=\sup \limits_{{a_{i} \in \mathbb{R}{}^{n_{i}}{R_{i}}>0}\atop{1 \leqslant i \leqslant m}}}{\left(\frac{1}{\prod\nolimits_{i=1}^{m} \omega_{i}\left(Q\left(a_{i}, R_{i}\right)\right)^{1+p \lambda_{i}}} \times \right.}\\&\left.\int_{Q\left(a_{1}, R_{1}\right)} \cdots \int_{Q\left(a_{m}, R_{m}\right)}|f(x)|^{p}|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}}.\end{aligned}$ |
$\begin{aligned}&\dot{B}{}^{p, \boldsymbol{\lambda}}\left(\mathbb{R}^{\boldsymbol{n}}, \ \ |x|{ }^{\boldsymbol{\alpha}} \mathrm{d} x\right) \\&:=\left\{f \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{\boldsymbol{n}},|x|^{\boldsymbol{\alpha}} \mathrm{d} x\right):\|f\|_{\dot{B}{}^{p, \boldsymbol{\lambda}}{\left(R^{\boldsymbol{n}},|x|\right.}^{\boldsymbol{\alpha}}{\mathrm{d}x)}}<+\boldsymbol{\infty}\right\},\end{aligned}$ |
$\begin{aligned}&\|f\|_{\dot{B}{}^{p, \boldsymbol{\lambda}}(\mathbb{R}^{\boldsymbol{n}},|x|^{\boldsymbol{\alpha}} {\mathrm{d} x)}}=\sup \limits_{R_{i}>0,1 \leqslant i \leqslant m}\left(\frac{1}{\prod\nolimits_{i=1}^{m} \omega_{i}\left(B\left(0, R_{i}\right)\right)^{1+p \lambda_{i}}}\right) \times \\&\ \ \left.\int_{B\left(0, R_{1}\right)} \cdots \int_{B\left(0, R_{m}\right)}|f(x)|^{p}|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}}.\end{aligned}$ |
Theorem 1.3??Let 1≤p < ∞, -1/p≤λi < 0, λ=(λ1, …, λm).αi≥0 and 1≤i≤m. Then
$\begin{aligned}&C_{m}:=\int_{\mathbb{R}^{n_{1}}} \cdots \int_{\mathbb{R}^{n_{m}}} \times \\&\frac{\Phi\left(y_{1}, \cdots, y_{m}\right)}{\left|y_{1}\right|^{n_{1}+\left(\alpha_{1}+n_{1}\right) \lambda_{1}} \cdots\left|y_{m}\right|^{n_{m}+\left(\alpha_{m}+n_{m}\right) \lambda_{m}}} \mathrm{~d} y<\boldsymbol{\infty}.\end{aligned}$ |
Theorem 1.4 Let 1≤p < ∞, -1/p≤λi < 0, λ=(λ1, …, λm), αi≥0 and 1≤i≤m. Then
$\begin{aligned}C_{m}&:=\int_{\mathbb{R}^{n_{1}}} \cdots \int_{\mathbb{R}^{n_{m}}} \times \\&\frac{\Phi\left(y_{1}, \cdots, y_{m}\right)}{\left|y_{1}\right|^{n_{1}+\left(\alpha_{1}+n_{1}\right) \lambda_{1}} \cdots\left|y_{m}\right|^{n_{m}+\left(\alpha_{m}+n_{m}\right) \lambda_{m}}} \mathrm{~d} y<\boldsymbol{\infty}.\end{aligned}$ |
$\begin{aligned}&\left\|\mathscr{H}_{\Phi}(f)\right\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right)} \\&=\sup \limits_{R>0}\left(\frac{1}{\omega(B(0, R))^{1+p \lambda}} \int_{B(0, R)}\left|\mathscr{H}_{\Phi}(f)(x)\right|^{p}|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} \\&=\sup \limits_{R>0}\left(\frac{1}{\omega(B(0, R))^{1+p \lambda}} \int_{B(0, R)}\left|\int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n}} f\left(\frac{x}{|y|}\right) \mathrm{d} y\right|^{p} \times\right. \\&\left.\quad|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}}\\&\leqslant \sup \limits_{R>0} \int_{\mathbb{R}^{n}}\left(\frac{1}{\omega(B(0, R))^{1+p \lambda}} \int_{B(0, R)}\left|\frac{\Phi(y)}{|y|^{n}} f\left(\frac{x}{|y|}\right)\right|^{p} \times\right.\\&\quad\left.|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} \mathrm{~d} y \\&= \sup \limits_{R>0} \int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n}}\left(\frac{1}{\omega(B(0, R))^{1+p \lambda}} \int_{B(0, R)}\left|f\left(\frac{x}{|y|}\right)\right|^{p} \times\right.\\&\quad\left.|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} \mathrm{~d} y \quad(x \mapsto|y| x)\\&= \sup \limits_{R>0} \int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n+(n+\alpha) \lambda}}\left(\frac{1}{\omega(B(0, R /|y|))^{1+p \lambda}} \int_{B(0, R|y|)} \times\right.\\&\quad\left.|f(x)|^{p}|x|^{\alpha} \mathrm{d} x\right){ }^{\frac{1}{p}} \mathrm{~d} y \\&\leqslant \int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n+(n+\alpha) \lambda}}\|f\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right)} \\&= C\|f\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha}\mathrm{d} x\right)}.\end{aligned}$ | (1) |
Next we prove the necessity. Since
$\left\|\mathscr{H}_{\Phi}\right\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right) \rightarrow \dot{B}{}^{p, \lambda}(\mathbb{R}^{n},|x| ^{\alpha}{\mathrm{d} x})}<\infty.$ |
$\left\|\mathscr{H}_{\Phi}\right\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right) \rightarrow \dot{B}{}^{p, \lambda}(\mathbb{R}^{n},|x| ^{\alpha}{\mathrm{d} x})} \le C.$ | (2) |
$\mathscr{H}_{\Phi}(g)(x)={Cg}(x).$ | (3) |
$\mathscr{H}_{\Phi}(g)(x)=\int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n}} \frac{|x|^{(\alpha+n) \lambda}}{|y|^{(\alpha+n) \lambda}} \mathrm{d} y={Cg}(x).$ |
$\begin{aligned}&\|g\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right)}\\&=\sup \limits_{R>0}\left(\frac{1}{\omega(B(0, R))^{1+p \lambda}} \int_{B(0, R)}|g(x)|^{p}|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} \\&=\sup \limits_{R>0}\left(\frac{1}{\left(\frac{\omega_{n-1}}{\alpha+n} R^{\alpha+n}\right)^{1+p \lambda}} \int_{B(0, R)}|x|^{(\alpha+n) \lambda p+\alpha} \mathrm{d} x\right) \\&=\left(\left(\frac{\alpha+n}{\omega_{n-1}}\right)^{1+p \lambda} \frac{\omega_{n-1}}{(\alpha+n)(1+p \lambda)}\right)^{\frac{1}{p}}<\infty.\end{aligned}$ |
$\left\|\mathscr{H}_{\Phi}\right\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d}x\right) \rightarrow \dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right)} \geqslant C .$ | (4) |
$\left\|\mathscr{H}_{\Phi}\right\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d}x\right) \rightarrow \dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right)}=C<\infty.$ |
$C:=\int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n+(\alpha+n) \lambda}} \mathrm{d} y<\infty,$ |
$\begin{aligned}&\left\|\mathscr{H}_{\Phi}(f)\right\|_{L^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right)} \\&=\sup \limits_{a \in \mathbb{R}^{n}, R>0}\left(\frac{1}{\omega(Q(a, R))^{1+p \lambda}} \int_{Q(a, R)}\left|\mathscr{H}_{\Phi}(f)(x)\right|^{p} \times\right. \\&\left.\quad|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} \\&=\sup \limits_{a \in \mathbb{R}^{n}, R>0}\left(\frac{1}{\omega(Q(a, R))^{1+p \lambda}} \int_{Q(a, R)} \left| \int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n}} \times\right.\right.\\&\left.\left. \quad f\left(\frac{x}{|y|}\right) \mathrm{d} y\right|^{p}|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} \\&\leqslant \left.\quad \sup \limits_{a \in \mathbb{R}^{n}, R>0} \int_{\mathbb{R}^{n}}\left(\frac{1}{\omega(Q(a, R))^{1+p \lambda}} \int_{Q(a, R)} \right| \frac{\Phi(y)}{|y|^{n}} \times\right. \\&\left.\left.\quad f\left(\frac{x}{|y|}\right) \mathrm{d} y\right|^{p}|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} \mathrm{~d} y \\&= \int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n}}\left(\frac{1}{\omega(Q(a, R))^{1+p \lambda}} \int_{Q(a, R)}\left|f\left(\frac{x}{|y|}\right)\right|^{p} \times\right. \\&\left.\quad|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} \mathrm{~d} y(x \mapsto|y| x)\\&=\int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n}} \left( \frac{\omega\left(Q\left(\frac{a}{|y|}, \frac{R}{|y|}\right)\right)^{1+p \lambda}}{\omega(Q(a, R))^{1+p \lambda}} \frac{1}{\omega\left(Q\left(\frac{a}{|y|}, \frac{R}{|y|}\right)\right)^{1+p \lambda}} \times\right. \\&\left.\quad \int_{Q\left(\frac{a}{|y|}, \frac{R}{|y|}\right)}|f(x)|^{p}|x|^{\alpha}|y|^{\alpha+n} \mathrm{~d} x\right)^{\frac{1}{p}} \mathrm{~d} y \\&=\int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n}}\left( |y|^{-(\alpha+n) p \lambda} \frac{1}{\omega\left(Q\left(\frac{a}{|y|}, \frac{R}{|y|}\right)\right)^{1+p \lambda}} \times\right.\\&\left.\quad \int_{Q\left(\frac{a}{|y|}, \frac{R}{|y|}\right)}|f(x)|^{p}|x|^{\alpha} \mathrm{d} x\right)^{\frac{1}{p}} \mathrm{~d} y \\&\leqslant\ \int_{\mathbb{R}^{n}} \frac{\Phi(y)}{|y|^{n+(n+\alpha) \lambda}}\|f\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d} x\right)} \\&=C\|f\|_{\dot{B}{}^{p, \lambda}\left(\mathbb{R}^{n},|x|^{\alpha} \mathrm{d}x\right)}.\end{aligned}$ |
Proof of Proposition 1.1??By Theorem 1.2 we merely need to prove the necessity. More precisely, we need to find a function g∈Lp, λ(
$\frac{\left\|\mathscr{H}_{\Phi}(g)\right\|_{L^{p, \lambda}\left(\mathbb{R}^{n}, \mathrm{~d} x\right)}}{\|g\|_{L^{p, \lambda}\left(\mathbb{R}^{n}, \mathrm{~d} x\right)}}=C.$ |
Case 1: if |a|>2R, then |x|>R. For
$\begin{aligned}&\quad \frac{1}{|Q(a, R)|{ }^{1+p \lambda}} \int_{Q(a, R)}|x|{ }^{n \lambda p} \mathrm{~d} x \\&\leqslant \frac{1}{|Q(a, R)|^{1+p \lambda}} \int_{Q(a, R)} R^{n \lambda p} \mathrm{~d} x=1.\end{aligned}$ |
$\begin{aligned}&\frac{1}{|Q(a, R)|^{1+p \lambda}} \int_{Q(a, R)}|x|{ }^{n \lambda p} \mathrm{~d} x \\&\leqslant \frac{1}{|Q(a, R)|^{1+p \lambda}} \int_{Q(0,3 R)} R^{n \lambda p} \mathrm{~d} x \\&=\frac{|Q(0,3 R)|^{1+p \lambda}}{|Q(a, R)|^{1+p \lambda}} \frac{1}{|Q(0,3 R)|^{1+p \lambda}} \int_{Q(0,3 R)}|x|^{n \lambda p} \mathrm{~d} x \\&=3^{n(1+p \lambda)} \frac{1}{|Q(0,3 R)|^{1+p \lambda}} \int_{Q(0,3 R)}|x|{ }^{n \lambda p} \mathrm{~d} x \\&\leqslant 3^{n(1+p \lambda)}(\sqrt{n})^{n \lambda p} \\&<+\infty .\end{aligned}$ |
Proof of Theorem 1.3??We just prove the theorem for m=2. For m>3, the method is similar. We first prove the sufficiency.
Since C2 < ∞, by the definitions of
$\begin{aligned}&\left\|\mathscr{H}_{\Phi}^{2}(f)\right\|_{\dot{B}{}^{p, \boldsymbol{\lambda}}\left(\mathbb{R}^{\boldsymbol{n}},|x|^{\boldsymbol{\alpha}} \mathrm{d} x\right)} \\&=\sup \limits_{R_{1}, R_{2}>0}\left(\frac{1}{\prod\nolimits_{i=1}^{2} \omega_{i}\left(B\left(0, R_{i}\right)\right)^{1+p \lambda_{i}}} \int_{B\left(0, R_{1}\right)} \int_{B\left(0, R_{2}\right)} \times\right. \\&\left.\quad\left|\mathscr{H}_{\Phi}^{2}(f)\left(x_{1}, x_{2}\right)\right|^{p}|x|^{\boldsymbol{\alpha}} \mathrm{d} x\right)^{\frac{1}{p}} \\&=\sup \limits_{R_{1}, R_{2}>0}\left(\frac{1}{\prod\nolimits_{i=1}^{2} \omega_{i}\left(B\left(0, R_{i}\right)\right)^{1+p \lambda_{i}}} \int_{B\left(0, R_{1}\right)} \int_{B\left(0, R_{2}\right)} \left| \int_{\mathbb{R}}{ }_{n_{1}} \times\right. \right.\\&\left.\left.\quad \int_{\mathbb{R}^{n_{2}}} \frac{\Phi\left(y_{1}, y_{2}\right)}{\left|y_{1}\right|^{n_{1}}\left|y_{2}\right|^{n_{2}}} f\left(\frac{x_{1}}{\left|y_{1}\right|}, \frac{x_{2}}{\left|y_{2}\right|}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}\right|^{p}|x|^{\boldsymbol{\alpha}} \mathrm{d} x\right)^{\frac{1}{p}}\\&\leqslant \sup \limits_{R_{1}, R_{2}>0} \int_{\mathbb{R}^{n_{1}}} \int_{\mathbb{R}^{n_{2}}} \frac{\Phi\left(y_{1}, y_{2}\right)}{\left|y_{1}\right|^{n_{1}}\left|y_{2}\right|^{n_{2}}}\left(\frac{1}{\prod\nolimits_{i=1}^{2} \omega_{i}\left(B\left(0, R_{i}\right)\right)^{1+p \lambda_{i}}} \times\right. \\&\quad \int_{\mathbb{R}^{n_{1}}} \int_{\mathbb{R}^{n_{2}}}\left|f\left(\frac{x_{1}}{\left|y_{1}\right|}, \frac{x_{2}}{\left|y_{2}\right|}\right)\right|^{p}\left|x_{1}\right|^{\alpha_{1}}\left|x_{2}\right|^{\alpha_{2}} \times \\&\left.\quad \mathrm{d} x_{1} \mathrm{~d} x_{2}\right)^{\frac{1}{p}} \mathrm{~d} y_{1} \mathrm{~d} y_{2}\\&=\sup \limits_{R_{1}, R_{2}>0} \int_{\mathbb{R}^{n_{1}}} \int_{\mathbb{R}^{n_{2}}} \frac{\Phi\left(y_{1}, y_{2}\right)}{\left|y_{1}\right|^{n_{1}+\left(\alpha_{1}+n_{1}\right) \lambda_{1}}\left|y_{2}\right|^{n_{2}+\left(\alpha_{2}+n_{2}\right) \lambda_{2}}} \times\\&\quad\left(\frac{1}{\prod\nolimits_{i=1}^{2} \omega_{i}\left(B\left(0, \frac{R}{\left|y_{i}\right|}\right)\right)^{1+p \lambda_{i}}} \int_{B\left(0, \frac{R_{1}}{\mid y_{1}\mid}\right)} \int_{B\left(0, \frac{R_{2}}{\left|y_{2}\right|}\right)} \times\right.\\&\quad\left.\left|f\left(x_{1}, x_{2}\right)\right|^{p}\left|x_{1}\right|^{\alpha_{1}}\left|x_{2}\right|^{\alpha_{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2}\right)^{\frac{1}{p}} \mathrm{~d} y_{1} \mathrm{~d} y_{2} \text {. }\end{aligned}$ |
$\begin{aligned}&\left\|\mathscr{H}_{\Phi}^{2}(f)\right\|_{\dot{B}{}^{p, \boldsymbol{\lambda}}\left(\mathbb{R}^{\boldsymbol{n}},|x|^{\boldsymbol{\alpha}} \mathrm{d} x\right) }\\&\leqslant \sup \limits_{R_{1}, R_{2}>0} \int_{\mathbb{R}^{n_{1}}} \int_{\mathbb{R}^{n_{2}}} \frac{\Phi\left(y_{1}, y_{2}\right)}{\left|y_{1}\right|^{n_{1}+\left(\alpha_{1}+n_{1}\right) \lambda_{1}}\left|y_{2}\right|^{n_{2}+\left(\alpha_{2}+n_{2}\right) \lambda_{2}}} \times \\&\quad\|f\|_{\dot{B}{}^{p, \boldsymbol{\lambda}}\left(\mathbb{R}^{\boldsymbol{n}},|x|^{\boldsymbol{\alpha}} \mathrm{d} x\right)} \\&=C_{2}\|f\|_{\dot{B}{}^{p, \boldsymbol{\lambda}}\left(\mathbb{R}^{\boldsymbol{n}},|x|^{\boldsymbol{\alpha}} \mathrm{d} x\right)}.\end{aligned}$ |
Next we prove the necessity. Take
$g\left(x_{1}, x_{2}\right)=\left|x_{1}\right|{ }^{\left(\alpha_{1}+n_{1}\right) \lambda_{1}}\left|x_{2}\right|^{\left(\alpha_{2}+n_{2}\right) \lambda_{2}}.$ |
Proof of Theorem 1.4 The proof of Theorem 1.4 is similar to the proof of Theorem 1.2, so we omit the details.
References
[1] | Hurwitz W A, Silverman L L. On the consistency and equivalence of certain definitions of summability[J]. Transactions of the American Mathematical Society, 1917, 18(1): 1-20. DOI:10.1090/S0002-9947-1917-1501058-2 |
[2] | Chen J C, Fan D S, Wang S L. Hausdorff operators on Euclidean spaces[J]. Applied Mathematics: A Journal of Chinese Universities Series B, 2013, 28(4): 548-564. DOI:10.1007/s11766-013-3228-1 |
[3] | Chen J C, Dai J W, Fan D S, et al. Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces[J]. Science China Mathematics, 2018, 61(9): 1647-1664. DOI:10.1007/s11425-017-9246-7 |
[4] | Brown G, Móricz F. Multivariate Hausdorff operators on the spaces Lp(${\mathbb{R}}^n$)[J]. Journal of Mathematical Analysis and Applications, 2002, 271(2): 443-454. DOI:10.1016/S0022-247X(02)00128-2 |
[5] | Chen J C, Fan D S, Zhang C J. Multilinear Hausdorff operators and their best constants[J]. Acta Mathematica Sinica, English Series, 2012, 28(8): 1521-1530. DOI:10.1007/s10114-012-1455-7 |
[6] | Chen J C, Fan D S, Liu J. Hausdorff operators on function spaces[J]. Chinese Annals of Mathematics, Series B, 2012, 33(4): 537-556. DOI:10.1007/s11401-012-0724-1 |
[7] | Lin X Y, Sun L J. Some estimates on the Hausdorff operator[J]. Acta Scientiarum Mathematicarum (Szeged), 2012, 78(3/4): 669-681. |
[8] | Wu X M. Best constants for a class of Hausdorff operators on Lebesgue spaces[J]. Advances in Mathematics, 2017, 46(5): 793-800. |
[9] | Gao G L, Wu X M, Guo W C. Some results for Hausdorff operators[J]. Mathematical Inequalities and Applications, 2015, 18(1): 155-168. |
[10] | Andersen K F. Boundedness of Hausdorff operators on Lp(${\mathbb{R}}^n$), H1(${\mathbb{R}}^n$) and BMO(${\mathbb{R}}^n$)[J]. Acta Scientiarum Mathematicarum (Szeged), 2003, 69(1/2): 409-418. |
[11] | Fu Z W, Grafakos L, Lu S Z, et al. Sharp bounds for m-linear Hardy and Hilbert operators[J]. Houston Journal of Mathematics, 2012, 38(1): 225-244. |