School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Received 3 April 2019; Revised 6 May 2019
Foundation items: Supported by the NSFC(11871450)
Corresponding author: CUI Hongbin, E-mail: cuihongbin16@mails.ucas.edu.cn
Abstract: This work is a generalization of Chen and Jiao's work, where they considered the question of explicit construction of some conformal minimal two-spheres of constant curvature in quaternionic projective space. The crucial point was to find some horizontal immersions derived from Veronese sequence in
Keywords: minimal two-sphereGaussian curvatureVeronese sequencequaternionic projective space
S2到
焦晓祥, 崔洪斌
中国科学院大学数学科学学院, 北京 100049
摘要: 本工作是Chen和Jiao工作的推广。他们考虑在四元数射影空间中如何具体构造常曲率共形极小二球,关键点是从
关键词: 极小二球高斯曲率Veronese序列四元数射影空间
There have been many researches about minimal surfaces in real and complex space forms[1-3]. For quaternionic projective space, Bryant[4] proved that the projections of horizontal holomorphic surfaces in
Recently, Chen and Jiao[10] used twistor map to discuss conformal minimal surface in quaternionic projective space, based on the horizontal condition given by Yang[11]. They got two polynomial equations as the horizontal conditions for the immersed surfaces in
In this paper we deal with the case
In section 1, we review the knowledge of geometry of quaternionic projective space, minimal surfaces in complex projective space, and horizontal equation of immersed surfaces with respect to the twistor map.
In section 2, we try to improve the calculation of Veronese two-spheres to the case n. We will calculate explicitly the case n=4 and get a series of conformal minimal two-spheres ?4, p=π○(U0·Vp9)(0≤p≤3) in
In section 3, we talk about the interesting phenomenon that the middle terms, V49 and V59, of the Veronese sequences can not be rotated horizontally with respect to the twistor map. We will use the method of harmonic sequence to prove it.
1 Preliminaries1.1 Geometry of quaternionic projective spaceLet
$\begin{array}{*{20}{c}}{{{\rm{i}}^2} = {{\rm{j}}^2} = {{\rm{k}}^2} = - 1,}\\{{\rm{ij}} = {\rm{k}} = - {\rm{ji}},{\rm{jk}} = {\rm{i}} = - {\rm{kj}},{\rm{ki}} = {\rm{j}} = - {\rm{ik}}{\rm{.}}}\end{array}$ | (1) |
$zw = ({z_1}{w_1} - {\bar z_2}{w_2}) + {\rm{j}}({z_2}{w_1} + {\bar z_1}{w_2}).$ | (2) |
${({z_1} + {\rm{j}}{z_2})^*} = {z_1} - {\rm{j}}{z_2}.$ | (3) |
${z_1} + {\rm{j}}{z_2} \mapsto \left( {\begin{array}{*{20}{c}}{{z_1}}\\{{z_2}}\end{array}} \right).$ | (4) |
The symplectic group is
$Sp(n) = \{ \mathit{\boldsymbol{A}} \in {\rm{GL}} (n;\mathbb{H}){|^t}{\mathit{\boldsymbol{A}}^*} \cdot \mathit{\boldsymbol{A}} = {\mathit{\boldsymbol{I}}_n}\} ,$ | (5) |
For A∈Sp(n+1) and [v]
$\mathit{\boldsymbol{A}} \cdot {[\mathit{\boldsymbol{v}}]_\mathbb{H}} = {[\mathit{\boldsymbol{Av}}]_\mathbb{H}}.$ | (6) |
$\mathbb{H}{P^n} = Sp(n + 1)/Sp(1) \times Sp(n).$ | (7) |
We have the following commutative diagram
$\begin{matrix} {} & Sp(n+1) & {} \\ {{\pi }_{2}}\swarrow & {} & \searrow {{\pi }_{1}} \\ \mathbb{H}{{P}^{n}} & {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\leftarrow}$}}{\pi }} & \mathbb{C}{{P}^{2n+1}} \\\end{matrix}$ | (8) |
Definition 1.1?? The twistor map gives a fibration, and the horizontal distribution
As in Ref[11], for [v]∈
${\mathscr{H} _{[v]}} = \{ w \in {v^ \bot }|{\sigma _v}(w) = 0,{\sigma _v} = { - ^t}{z_2}{\rm{d}}{z_1}{ + ^t}{z_1}{\rm{d}}{z_2}\} .$ | (9) |
Proposition 1.1?? If ?=[f]:M→
1.2 Minimal surface in a complex projective spaceIn this subsection, we introduce some knowledge about harmonic sequences and minimal surfaces in
Let
Let M be a Riemann surface. We identify a smooth map ?:M2→
Each linearly full conformal minimal immersion φ from S2 is obtained from a holomorphic curve φ0 in
$0\overset{\partial }{\mathop{\to }}\,\underline{\varphi _{0}^{n}}\overset{\partial }{\mathop{\to }}\,\cdots \overset{\partial }{\mathop{\to }}\,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\varphi }=\underline{\varphi _{\alpha }^{n}}\overset{\partial }{\mathop{\to }}\,\cdots \overset{\partial }{\mathop{\to }}\,\underline{\varphi _{n}^{n}}\overset{\partial }{\mathop{\to }}\,0.$ | (10) |
${f_{i + 1}} = \frac{\partial }{{\partial z}}{f_i} - \frac{{\left\langle {\frac{\partial }{{\partial z}}{f_i},{f_i}} \right\rangle }}{{|{f_i}{|^2}}}{f_i},0 \le i \le n - 1.$ | (11) |
$\begin{array}{*{20}{c}}{\frac{\partial }{{\partial z}}{f_i} = - {\gamma _{i - 1}}{f_{i - 1}},1 \le i \le n,}\\{\frac{{{\partial ^2}}}{{\partial z\partial \bar z}}{\rm{log}}|{f_j}{|^2} = {\gamma _j} - {\gamma _{j - 1}},}\\{\frac{{{\partial ^2}}}{{\partial z\partial \bar z}}{\rm{log}}{\gamma _j} = {\gamma _{j + 1}} - 2{\gamma _j} + {\gamma _{j - 1}},0 \le j \le n - 1.}\end{array}$ | (12) |
$V_p^n(z) = {[^t}({g_{p,0}}(z), \cdots ,{g_{p,n}}(z))],$ | (13) |
${g_{p,j}}(z) = \frac{{p!}}{{{{(1 + z\bar z)}^p}}}\sqrt {C_n^j} {z^{j - p}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^k{(z\bar z)^k}.$ | (14) |
Remark 1.1?? Notice that gp, j(z) have a common factor
The Veronese sequence is particularly important for the following rigidity theorem[2].
Lemma 1.1?? Let Ψ:S2→
1.3 Horizontal equations of immersed surfacesBased on the above discussions, we can produce conformal minimal two-spheres from the Veronese two-spheres in
Proposition 1.2?? Let Ψ:S2→
From the horizontal condition, if Ψ=[f] is horizontal, then tfBdf=0, where
Proposition 1.3?? For Ψ=[f]=[t(f1, f2, …, f2n+2)]:S2→
$\left\{ {\begin{array}{*{20}{l}}{\sum\nolimits_{i,j = 1}^{2n + 2} {{A_{ij}}} {f_i}\partial {f_j} = 0,}\\{\sum\nolimits_{i,j = 1}^{2n + 2} {{A_{ij}}} {f_i}\bar \partial {f_j} = 0,}\end{array}} \right.$ | (15) |
2 Conformal minimal two-spheres in
For Veronese sequence, Vp2n+1 and V2n+1-p2n+1 have the following relation.
Lemma 2.1 V2n+1-p2n+1=J2n+2· Vp2n+1, here we choose Vp2n+1=[t(gp, 0, …, gp, 2n+1)], where
${g_{p,j}} = \sqrt {C_{2n + 1}^j} {z^{j - p}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{2n + 1 - j}^k{(zz)^k},$ | (16) |
${\mathit{\boldsymbol{J}}_m} = \left( {\begin{array}{*{20}{c}}0&0& \cdots &0&{{{( - 1)}^{m - 1}}}\\0&0& \cdots &{{{( - 1)}^m}}&0\\ \cdots & \cdots & \cdots & \cdots & \cdots \\0&{{{( - 1)}^1}}& \cdots &0&0\\{{{( - 1)}^0}}&0& \cdots &0&0\end{array}} \right).$ | (17) |
Proof
$\begin{array}{*{20}{l}}{{g_{2n + 1 - p,2n + 1 - j}}}\\{ = \sqrt {C_{2n + 1}^{2n + 1 - j}} {z^{p - j}}\sum\limits_l {{{( - 1)}^l}} C_{2n + 1 - j}^{2n + 1 - p - l}C_j^l{{(zz)}^l}.}\end{array}$ | (18) |
$\begin{array}{*{20}{l}}{{g_{2n + 1 - p,2n + 1 - j}} = {{( - 1)}^{j - p}}{{\bar g}_{p,j}}}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {{( - 1)}^p}{{( - 1)}^j}{{\bar g}_{p,j}}.}\end{array}$ | (19) |
Now, if Vp2n+1 can be rotated horizontally, U·Vp2n+1 satisfies the horizontal equations,
$\left\{ {\begin{array}{*{20}{l}}{^tV{{_p^{2n + 1}}^t}\mathit{\boldsymbol{UBU}}V_{p + 1}^{2n + 1} = 0,}\\{^tV{{_p^{2n + 1}}^t}\mathit{\boldsymbol{UBU}}V_{p - 1}^{2n + 1} = 0.}\end{array}} \right.$ | (20) |
$\left\{ {\begin{array}{*{20}{l}}{^tV{{_{2n + 1 - p}^{2n + 1}}^t}{J_{2n + 2}}^t\mathit{\boldsymbol{\bar UB\bar U}}{J_{2n + 2}}V_{2n - p}^{2n + 1} = 0,}\\{^tV{{_{2n + 1 - p}^{2n + 1}}^t}{J_{2n + 2}}^t\mathit{\boldsymbol{\bar UB\bar U}}{J_{2n + 2}}V_{2n + 2 - p}^{2n + 1} = 0.}\end{array}} \right.$ | (21) |
So we only need to consider the case p≤n.
Denote gp, j(0≤p, j≤n) by
${g_{p,j}} = \sqrt {C_n^j} {z^{j - p}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^k{(z\bar z)^k}.$ | (22) |
$\partial {g_{p,j}} = \sqrt {C_n^j} {z^{j - p - 1}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^k(j - p + k){(z\bar z)^k},$ | (23) |
$\partial {g_{p,j}} = \sqrt {C_n^j} {z^{j - p + 1}}\sum\limits_k {{{( - 1)}^k}} C_j^{p - k}C_{n - j}^kk{(zz)^{k - 1}}.$ | (24) |
$\left\{ {\begin{array}{*{20}{l}}{\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^l(j - p + l) = 0,}\\{\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^ll = 0,}\end{array}} \right.$ | (25) |
If we change the positions of k and l in the second formula (notice that k+l=t=constant for some t and Sij=-Sji), then we get
$\sum\limits_{i + j = m} {{S_{ij}}} \sum\limits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^l = 0.$ | (26) |
$\left\{ {\begin{array}{*{20}{l}}{\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^l = 0,}\\{\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{n - i}^kC_j^{p - l}C_{n - j}^li = 0.}\end{array}} \right.$ | (27) |
Theorem 2.1?? Let Vp2n+1:S2→
$\left\{ {\begin{array}{*{20}{l}}{\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{2n + 1 - i}^kC_j^{p - l}C_{2n + 1 - j}^l = 0,}\\{\sum\nolimits_{i + j = m} {{S_{ij}}} \sum\nolimits_{k + l = t} {C_i^{p - k}} C_{2n + 1 - i}^kC_j^{p - l}C_{2n + 1 - j}^li = 0,}\end{array}} \right.$ | (28) |
2.2 Projections of Vp9, p=0, 1, 2, 3, 4As an application of (28), in this subsection, we calculate the Veronese maps Vp9, p=0, 1, 2, 3, 4.
First, we talk about the general V02n+1, the equations (28) reduce to:
$\left\{ {\begin{array}{*{20}{l}}{\sum\nolimits_{i + j = m} {{S_{ij}}} = 0,}\\{\sum\nolimits_{i + j = m} {{S_{ij}}} i = 0.}\end{array}} \right.$ | (29) |
$\sum\limits_{i + j = m,j > i} {{S_{ij}}} (j - i) = 0,$ | (30) |
$\sum\limits_{i + j = m,j > i} {{A_{ij}}} \sqrt {C_{2n + 1}^iC_{2n + 1}^j} (j - i) = 0.$ | (31) |
First, when n=1, the number of elements in the lines which are parallel to antidiagonal in the upper triangulation part of S (respect A) is less than 2, then they should be all zeros, so with respect to the twistor map π:
${\sum\limits_{i + j = 3,j > i} {{S_{ij}}} (j - i) = 0,}$ | (32) |
${\sum\limits_{i + j = 3,j > i} {{A_{ij}}} C_3^i(j - i) = 0.}$ | (33) |
$\left( {\begin{array}{*{20}{c}}0&0&0&{{A_{03}}}\\0&0&{ - {A_{03}}}&0\\0&{{A_{03}}}&0&0\\{ - {A_{03}}}&0&0&0\end{array}} \right)$ | (34) |
In general, we have
Lemma 2.2??
$\left\{ {\begin{array}{*{20}{l}}{{A_{ij}} = 0,i + j \ne 2n + 1,}\\{{A_{ij}} = {{( - 1)}^i}{A_{0,2n + 1}},i + j = 2n + 1.}\end{array}} \right.$ | (35) |
Proof?? For (1+x)2n+1=
Remark 2.1 ??Readers could see
Lemma 2.3?? Choose two solutions of tUBU=A, denote them by M, N, then π○(M·Vp2n+1) is symplectic equivalent to π○(N·Vp2n+1).
Proof??It's easy to see MN-1 are symplectic matrix with the form
From the above Lemma, the key point of "rotate horizontally" is to decide the existence of A, about U, we only need to search for the solution of special form, here we consider that U possess this form:
Then
In the rest part of this article, we will always denote the above matrix by U0.
This solution is special, now U0V02n+1 is horizontal, since
${\mathit{\boldsymbol{U}}_0}V_{2n + 1}^{2n + 1} = {\mathit{\boldsymbol{U}}_0}{\mathit{\boldsymbol{J}}_{2n + 2}}\bar V_0^{2n + 1} = {\bf{J}} \circ {\mathit{\boldsymbol{U}}_0}V_0^{2n + 1}$ | (36) |
From the above discussion, we have
Theorem 2.2?? V09 can be rotated horizontally, and π○(U0·V09) is conformal minimal two-sphere with constant curvature 4/9 in
For V19, If we set
$\left\{ {\begin{array}{*{20}{l}}{m{F_1} - {F_2} = 0,}\\{9m{F_0} - 2(m{F_1} - {F_2}) = 0,}\\{9(9 - m){F_0} + m{F_1} - {F_2} = 0,}\end{array}} \right.$ | (37) |
$\left\{ {\begin{array}{*{20}{l}}{m{F_2} - {F_3} = 0,}\\{9m{F_1} - 2(m{F_2} - {F_3}) = 0,}\\{9(9 - m){F_1} + m{F_2} - {F_3} = 0,}\end{array}} \right.$ | (38) |
${F_1} = 0,{F_2} = 0,{F_3} = 0.$ | (39) |
${F_{2k}} = 0 \Leftrightarrow \sum\limits_{i + j = m,j > i} {{S_{ij}}} ({(m - i)^{2k}} - {i^{2k}}) = 0,$ | (40) |
$\sum\limits_{i + j = m,j > i} {{S_{ij}}} ({(m - i)^{2k}} - {i^{2k}}) = 0 \Leftarrow {F_t} = 0$ | (41) |
So, finally, the equations reduce to
${F_1} = 0,{F_3} = 0.$ | (42) |
Theorem 2.3?? For V19 can be rotated horizontally, and π○(U0·V19) is conformal minimal two-sphere with constant curvature 4/25 in
For V29, (28) reduce to
$\begin{array}{*{20}{l}}{\left[ {\begin{array}{*{20}{l}}{m{F_1} - {F_2} = 0,}\\{m{F_2} - {F_3} = 0,}\\{{F_4} - 2m{F_3} + {m^3}{F_1} = 0,}\\{{F_5} - 2m{F_4} + ({m^2} + m - 1){F_3} + (m - {m^2}){F_2} = 0,}\\{{F_3} - m{F_2} + \frac{{72m(m - 1)}}{{48m - 208}}{F_1} = 0,}\end{array}} \right.}\end{array}$ | (43) |
${F_1} = 0,{F_2} = 0,{F_3} = 0,{F_4} = 0,{F_5} = 0.$ | (44) |
${F_1} = 0,{F_3} = 0,{F_5} = 0.$ | (45) |
Theorem 2.4?? V29 can be rotated horizontally, and π○(U0·V29) is conformal minimal two-sphere with constant curvature 4/37 in
For V39, (28) reduce to
$\mathit{\boldsymbol{B}}3{ * ^t}({F_7},{F_6},{F_5},{F_4},{F_3},{F_2},{F_1},{F_0}) = 0,$ | (46) |
${F_i} = 0$ | (47) |
The equations Ft=0 which t is even are degenerate to those t is odd.
So, finally, the equations reduce to
${F_1} = 0,{F_3} = 0,{F_5} = 0,{F_7} = 0.$ | (48) |
Theorem 2.5?? V39 can be rotated horizontally, and π○(U0·V39) is conformal minimal two-sphere with constant curvature 4/45 in
We continue to talk about V49, (28) reduce to
$\mathit{\boldsymbol{B}}4{ * ^t}({F_9},{F_8},{F_7},{F_6},{F_5},{F_4},{F_3},{F_2},{F_1},{F_0}) = 0,$ | (49) |
${F_i} = 0$ | (50) |
The equations Ft=0 which t is even are degenerate to those t is odd.
So, finally, the equations reduce to
${F_1} = 0,{F_3} = 0,{F_5} = 0,{F_7} = 0,{F_9} = 0.$ | (51) |
$\left\{ {\begin{array}{*{20}{l}}{\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} (j - i) = 0,}\\{\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^3} - {i^3}) = 0,}\\{\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^5} - {i^5}) = 0,}\\{\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^7} - {i^7}) = 0,}\\{\sum\nolimits_{i + j = m,j > i} {{S_{ij}}} ({j^9} - {i^9}) = 0.}\end{array}} \right.$ | (52) |
Theorem 2.6?? V49 can not be rotated horizontally.
3 The middle terms of harmonic sequenceIn this section, we give another proof for the phenomenon that V49 and V59 can not be rotated horizontally. In fact, it is also right for any harmonic sequence in
Theorem 3.1?? In the following harmonic sequence associated to a linearly full holomorphic map [f0]=f:M2→
$0\mathop \to \limits^\partial \underline {{f_0}} \mathop \to \limits^\partial \cdots \mathop \to \limits^\partial \underline {{f_4}} \mathop \to \limits^\partial \underline {{f_5}} \mathop \to \limits^\partial \cdots \mathop \to \limits^\partial \underline {{f_9}} \mathop \to \limits^\partial 0.$ | (53) |
Proof??Assume f4 can be rotated horizontally, tf4Bdf4=0, from(11), (12), we have
$\begin{array}{*{20}{l}}{^t{f_4}\mathit{\boldsymbol{B}}{\rm{d}}{f_4}{ = ^t}{f_4}\mathit{\boldsymbol{B}}(\partial {f_4}{\rm{d}}z + \bar \partial {f_4}{\rm{d}}\bar z)}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} { = ^t}{f_4}\mathit{\boldsymbol{B}}({f_5} + \partial {\rm{log}}|{f_4}{|^2}{f_4}){\rm{d}}z + }\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\kern 1pt} ^t}{f_4}\mathit{\boldsymbol{B}}( - {\gamma _3}{f_3}){\rm{d}}z}\\{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = 0,}\end{array}$ | (54) |
$\left\{ {\begin{array}{*{20}{l}}{^t{f_4}\mathit{\boldsymbol{B}}{f_5} = 0,}\\{^t{f_4}\mathit{\boldsymbol{B}}{f_3} = 0,}\end{array}} \right.$ | (55) |
$^t{f_4}\mathit{\boldsymbol{B}}{f_5} = 0{\mathop \to \limits^\partial {^t}}{f_4}\mathit{\boldsymbol{B}}{f_6} = 0{\mathop \to \limits^{\bar \partial } {^t}}{f_3}\mathit{\boldsymbol{B}}{f_6} = 0.$ | (56) |
$^t{f_0}\mathit{\boldsymbol{B}}{f_i} = 0,i = 0,1,2,3,4,5,6,7,8,9,$ | (57) |
f5 is similar, we only need to show f9 is a local zero section.
References
[1] | Calabi E. Minimal immersions of surfaces in Euclidean spheres[J]. J Differ Geom, 1967, 1: 111-125. DOI:10.4310/jdg/1214427884 |
[2] | Bolton J, Jensen G R, Rigoli M, et al. On conformal minimal immersion of S2 into |
[3] | Eells J, Wood J C. Harmonic maps from surfaces to complex projective spaces[J]. Adv Math, 1983, 49: 217-263. DOI:10.1016/0001-8708(83)90062-2 |
[4] | Bryant R L. Conformal and minimal immersions of compact surfaces into the 4-sphere[J]. J Differ Geom, 1982, 17: 455-473. DOI:10.4310/jdg/1214437137 |
[5] | Aithal A R. Harmonic maps from S2 to |
[6] | Bahy-El-Dien A, Wood J C. The explicit construction of all harmonic two-spheres in quaternionic projective spaces[J]. Proc Lond Math Soc, 1991, 62: 202-224. |
[7] | He L, Jiao X X. Classification of conformal minimal immersions of constant curvature from S2 to |
[8] | He L, Jiao X X. On conformal minimal immersions of S2 in |
[9] | He L, Jiao X X. On conformal minimal immersions of constant curvature from S2 to |
[10] | Chen X D, Jiao X X. Conformal minimal surfaces immersed into |
[11] | Yang K. Complete and compact minimal surfaces[C]. Dordrecht: Kluwer Academic Publishers, 1989: 66-67. |