删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

A powerful procedure for multiple outcomes comparison with covariate adjustment and its application

本站小编 Free考研考试/2021-12-25

张胜虎1,2, 朱家砚3, 张三国1,2
1. 中国科学院大学数学科学学院, 北京 100049;
2. 中国科学院大数据挖掘与知识管理重点实验室, 北京 100049;
3. 武汉学院信息系, 武汉 430212
摘要: 目前在文献中有很多关于多响应比较的研究方法,但是对带协变量调整的非参数检验的研究较少。一种直观的想法是将数据先投影到协变量的正交空间中,然后再利用秩和检验、调整的秩和检验或最大值检验方法。但是,功效普遍不高。在调整的秩和检验和伪F检验两种方法基础上,构建MIN2检验。大量模拟和实际数据表明,MIN2检验的效果优于现有的非参数检验方法。
关键词: 多响应比较协变量调整伪F检验功效
Multiple outcomes comparison is frequently encountered in many research areas. For example, in a plasma-renin activity clinical trail[1-2], investigators aimed to see whether the drug fenoterol increases or reduces plasma-renin activity, five endpoints described by five occasions (after 0, 2, 6, 8, and 12 h) were measured. In genetics, in order to see whether the genetic variants increase the risk of disease occurrence, investigators often collect two groups of individuals with the case group suffering from disease and the control group being healthy, and many outcomes described by genetic variants are genotyped on them. In genomics, to investigate the age-dependent regulation of gene expression in human brain, RNAs harvested from postmortem samples of 30 individuals were analyzed using Affymetrix gene chips and the aim was to see whether the gene expression patterns varied among two groups categorized by age of 73 with adjusting for gender[3].
Many procedures including parametric and nonparametric ones have been developed in the literature. A classic method is the Hotelling's T2 test (HT)[4], which is the optimal invariant test when data follow multinormal distribution with homoscedasticity. If the normal assumption is violated, the non-parametric methods are rank-sum test (RST)[5], adjusted rank-sum test (ARST)[6], and rank-maximum test (MAX)[7]. The above tests were derived without adjusting for covariates. However, in a real application such as the ageing human brain data[3] analyzed later, the investigators want to see the differences of multiple patterns between cases and controls after adjusting for gender. At this point, covariate adjustment is essential, and it reduces the bias and improves the precision of the comparison(see Refs.[8-12]).
In this work, we combine a version of ARST and the pseudo F test, which was developed to handle the ecologic data in Ref.[13] and can be thought as a non-parametric version of multivariate regression model[14-17], and propose a MIN2 test.
1 The MIN2 testConsider two groups, group 1 and group 2. Suppose that there are n1 and n2 subjects sampled from the two groups, respectively, and k(k>1) outcomes are measured on a continuous scale on each individual. Let n=n1+n2, Y1 and X1 be the response and covariate matrices for group 1, with dimension of n1×k and n1×d, respectively, and Y2 and X2 be the response and covariate matrices for group 2, with dimension of n2×k and n2×d, respectively. Define $\mathit{\boldsymbol{Y}} = \left( {\frac{{{\mathit{\boldsymbol{Y}}_1}}}{{{\mathit{\boldsymbol{Y}}_2}}}} \right) $ and $\mathit{\boldsymbol{X}} = \left( {\frac{{{\mathit{\boldsymbol{X}}_1}}}{{{\mathit{\boldsymbol{X}}_2}}}} \right) $. The problem of interest is the extent to which the differences between the two groups are maintained after covariate adjustment. Therefore, the null hypothesis can be expressed as follows:
H0:There is no difference between the two groups after covariate adjustment.
When considering the covariates, the HT, RST, ARST, and MAX can not be applied directly. So we project Y orthogonal to the space spanned by covariates X to get the residual matrix E, that is,
$\mathit{\boldsymbol{E = }}\left( {{\mathit{\boldsymbol{I}}_n} - {\mathit{\boldsymbol{H}}_X}} \right)\mathit{\boldsymbol{Y}} = \left( \begin{array}{l}{\mathit{\boldsymbol{E}}_1}\\{\mathit{\boldsymbol{E}}_2}\end{array} \right),$
where In is n-dimensional identity matrix, HX=X(XτX)-1Xτ, E1 and E2 are matrices with dimension of n1×k and n2×k, respectively. Denote E=(euv), u=1, 2, …, n, and v=1, 2, …, k. The marginal distributions corresponding to e1v and env are Fv and Gv, respectively. At this point, the tests such as HT, RST, ARST, and MAX mentioned above can be obtained based on E.
The ARST was proposed in Ref.[6] to accommodate the null hypothesis
$ {\tilde H}$0:θv=Pr(e1v < env)-Pr(e1v>env)=0, v=1, …, k.For the vth outcomes, let R1iv and R2jv be the mid-ranks of eiv and ejv, i=1, 2, …, n1, j=n1+1, n1+2, …, n.Define R1i=$ \sum\limits_{v = 1}^k {{R_{1iv}}} $, R2j=$ \sum\limits_{v = 1}^k {{R_{2jv}}} $, $ {{\bar R}_1} = \frac{1}{{{n_1}}}\sum\limits_{i = 1}^{{n_1}} {{R_{1i}}} $, $ {{\bar R}_2} = \frac{1}{{{n_2}}}\sum\limits_{j = {n_1} + 1}^{{n}} {{R_{2j}}} $, $\widehat {\sigma _1^2} = \frac{1}{{{n_1}}}\sum\limits_{i = 1}^{{n_1}} {{{\left( {{R_{1i}} - {{\bar R}_1}} \right)}^2}} $, $\widehat {\sigma _2^2} = \frac{1}{{{n_2}}}\sum\limits_{j = {n_1} + 1}^n {{{\left( {{R_{2j}} - {{\bar R}_2}} \right)}^2}} $, and $ \widehat {{\sigma ^2}} = \frac{1}{{n - 2}}\left({\left({{n_1} - 1} \right)\widehat {\sigma _1^2} + \left({{n_2} - 1} \right)\widehat {\sigma _2^2}} \right)$.Then the ARST can be written as
${T_h} = \frac{{{{\bar R}_2} - {{\bar R}_1}}}{{\widehat \sigma \sqrt {\widehat h\left( {1/{n_1} + 1/{n_2}} \right)} }}, $ (1)
where $ {\widehat h}$ is a consistent estimate (see Ref.[6]) of
$h = \frac{{\sum\limits_{u = 1}^k {\sum\limits_{v = 1}^k {{{\left( {1 + \lambda } \right)}^2}\left( {{a_{uv}} + {b_{uv}}\lambda } \right)} } }}{{\sum\limits_{u = 1}^k {\sum\limits_{v = 1}^k {\left[ {{e_{uv}}{\lambda ^3} + \left( {{b_{uv}} + 2{f_{uv}}} \right){\lambda ^2} + \left( {{a_{uv}} + 2{q_{uv}}} \right)\lambda + {p_{uv}}} \right]} } }}, $
where
au v=cov(Gu(e1 u), Gv(e1 v)), bu v=cov(Fu(en u), Fv(en v)), eu v=cov(Fu(e1 u), Fv(e1 v)), fu v=cov(Fu(e1 u), Gv(en v)), pu v=cov(Gu(en u), Gv(en v)), quv=cov(Gu(en u), Fv(e1 v)), and λ=n1/n2.
The ARST maintains good power in the alternative parameter space when θvs lie in the same direction. When θvs lie in different directions or the magnitudes of some of θvs are large, the test may suffer from substantial loss of power. So, a MAX test was proposed in Ref.[7] to address this issue. However its power is not optimistic when most of the endpoints provide evidences and these evidences are not so strong.
When θvs lie in different directions or the magnitudes of some of θvs are large, the Kendall τ distance is applied in identifying this difference very well. The Kendall τ distance between two groups of observations is defined as the total number of discordant pairs. The larger the distance, the more dissimilar both groups are. Let D=(dlm)n×n be the Kendall τ distance matrix based on Y and S=(slm)n×n with slm=$ - \frac{1}{2}d_{lm}^2$, l, m=1, 2, …, n. Denote G=(G1, G2, …, Gn)T, which is the group status column vector, with Gi=1 for group 1 and Gj=0 for group 2, i=1, 2, …, n1, j=n1+1, n2+2, …, n. Let Z=(X, G) be the design matrix, HX=X(XTX)-1XT, HZ=Z(ZTZ)-1ZT, and C=In-n-1JJT be the centering matrix, where In and J are the n×n identity matrix and the n-dimensional column vector of 1s, respectively. The pseudo F statistic [13] based on Kendall τ distance can be expressed as
${T_F} = \frac{{{\rm{tr}}\left[ {\left( {{\mathit{\boldsymbol{H}}_Z} - {\mathit{\boldsymbol{H}}_X}} \right)\mathit{\boldsymbol{CSC}}} \right]}}{{{\rm{tr}}\left[ {\left( {{\mathit{\boldsymbol{I}}_n} - {\mathit{\boldsymbol{H}}_Z}} \right)\mathit{\boldsymbol{CSC}}} \right]}}.$ (2)
Let p1 be the p-value of Th and p2 be the p-value of TF, where p1 can be obtained by the normal distribution and p2 is obtained by permutation procedure [14]. We propose an MIN2 as
${\rm{MIN2 = min}}\left( {{p_1}, {p_2}} \right).$ (3)
The MIN2 test integrates the superiorities of Th and TF and is thus more robust than Th and TF. However, the asymptotical distribution of MIN2 is not known. We recommend to use the permutation procedure to get the p-value of MIN2:
1) set a large number B, for example B=1 000, and calculate the MIN2 statictic using the observations, denote it by η(0);
2) for b from 1 to B, randomly permute n observations and arrange the first n1 samples to group 1 and other n2 samples to group 2, and calculate the MIN2 statictic, denote it by η(b);
3) the p-value of the MIN2 statictic is calculated as $ p - {\rm{value = }}\frac{{\# \left\{ {{\eta ^{\left( b \right)}} \le {\eta ^{\left( 0 \right)}}:b = 1, 2, \cdots , B} \right\}}}{B}$.
2 Simulation studiesWe conduct simulation studies to evaluate the performance of the proposed MIN2 with HT, RST, ARST, and MAX. The empirical type Ⅰ error rates and powers are simulated using data from two distributions: Log-normal and Laplace distributions. To study the influence of small sample size, we consider n1=n2∈{20, 25, 30, 35, 40, 45, 50}. Assume
$\mathit{\boldsymbol{Y}}=\mathit{\boldsymbol{X \gamma}}\text{ }+\mathit{\boldsymbol{G \beta}}\text{ }+\epsilon , $ (4)
where X~N(0, Σ), Σ=(σij) with σii=1 and σij=0.2(ij) for i, j∈{1, 2, 3, 4}, G is a column of the group status indicator, γ is the matrix with the element being 1, $\mathit{\boldsymbol{\epsilon}}$ follows two distributions: (ⅰ)multivariate Log-normal with logs having mean vector 0 and covariance matrix Δ; and (ⅱ) Laplace distribution with mean vector 0 and covariance matrix Δ. Δ is a 10-dimensional positive definite matrix with Δii=1 for i∈{1, 2, …, 10} and Δij=ρ=0.3(0.7) for ij∈{1, 2, …, 10}. Then the null hypothesis testing on θv=0 can be transformed as βv=0, v=1, 2, …, 10.
To evaluate the type Ⅰ error rate, we set βv=0, v=1, 2, …, 10. 1 000 replicates are conducted and the nominal significance level is set to be 0.05. The results for Log-normal and Laplace distributions are summarized in Table 1 and Table 2, respectively. In Table 1, it is seen that the HT is a little bit conservative with the empirical type Ⅰ error rates being less than 0.05 and the MAX is optimistic when the sample size is small. The other three tests maintain good type Ⅰ error rates, which are close to 0.05. Similar phenomena are observed in Table 2. For example, when the data are Log-normal distributed with the sample size of 40, the empirical type Ⅰ error rates of HT, RST, ARST, MAX, and MIN2 are 0.038, 0.048, 0.047, 0.069, and 0.046, respectively, as ρ=0.3 and 0.034, 0.045, 0.045, 0.065, and 0.048, respectively, as ρ=0.7. When the data are generated from the Laplace distribution with the sample size of 40, the empirical type Ⅰ error rates of HT, RST, ARST, MAX, and MIN2 are 0.054, 0.046, 0.047, 0.072, and 0.046, respectively, as ρ=0.3 and 0.054, 0.049, 0.050, 0.066, and 0.052, respectively, as ρ=0.7.
Table 1
Table 1 The empircial type Ⅰ error rates of HT, RST, ARST, MAX, and MIN2 when the data are generated from ten-dimensional Log-normal distribution
ρ n1=n2 HT RST ARST MAX MIN2
0.3 20 0.035 0.048 0.048 0.102 0.049
25 0.037 0.051 0.052 0.087 0.058
30 0.034 0.054 0.054 0.081 0.054
35 0.033 0.047 0.046 0.075 0.057
40 0.038 0.048 0.047 0.069 0.046
45 0.034 0.046 0.046 0.060 0.047
50 0.037 0.052 0.054 0.058 0.057
0.7 20 0.031 0.043 0.045 0.087 0.044
25 0.038 0.050 0.053 0.080 0.055
30 0.035 0.045 0.047 0.076 0.043
35 0.034 0.058 0.059 0.068 0.053
40 0.034 0.045 0.045 0.065 0.048
45 0.037 0.051 0.055 0.063 0.049
50 0.037 0.052 0.054 0.058 0.057
Note:The nominal significance level is 0.05 and 1 000 replicates are conducted.

Table 1 The empircial type Ⅰ error rates of HT, RST, ARST, MAX, and MIN2 when the data are generated from ten-dimensional Log-normal distribution


Table 2
Table 2 The empircial type Ⅰ error rates of HT, RST, ARST, MAX, and MIN2 when the data are generated from ten-dimensional Laplace distribution
ρ n1=n2 HT RST ARST MAX MIN2
0.3 20 0.049 0.048 0.050 0.108 0.056
25 0.046 0.039 0.041 0.086 0.046
30 0.045 0.049 0.050 0.082 0.053
35 0.046 0.052 0.055 0.076 0.055
40 0.054 0.046 0.047 0.072 0.046
45 0.042 0.045 0.047 0.067 0.050
50 0.046 0.058 0.058 0.062 0.043
0.7 20 0.038 0.054 0.059 0.083 0.045
25 0.046 0.040 0.043 0.059 0.046
30 0.045 0.047 0.051 0.067 0.048
35 0.046 0.058 0.058 0.065 0.055
40 0.054 0.049 0.050 0.066 0.052
45 0.042 0.057 0.061 0.066 0.054
50 0.046 0.045 0.047 0.064 0.048
Note:The nominal significance level is 0.05 and 1 000 replicates are conducted.

Table 2 The empircial type Ⅰ error rates of HT, RST, ARST, MAX, and MIN2 when the data are generated from ten-dimensional Laplace distribution

To make power comparison, two types of alternatives are considered:
(a) β=(0.3, 0.3, 0.3, 0.3, 0.3, -0.3, -0.3, -0.3, -0.3, -0.3)T;
(b) β=(0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0)T.
The results for Log-normal and Laplace distributions are displayed in Figs. 1 and 2, respectively, with ρ=0.3 on the left panels and ρ=0.7 on the right panels. For scenario (a), we can see that the RST and ARST have smallest powers, which are close to 0.05. It is reasonable since the differences among the outcomes are counteracted. With the increase in the sample size, the powers of HT, MAX, and MIN2 increase. The MIN2 is the most powerful among all the tests. Sometimes, the power increase for MIN2 reaches more than 30% compared with other tests. For example, for Log-normal distribution, when n1=n2=30 and ρ=0.3, the empirical powers of HT, RST, ARST, MAX, and MIN2 are 0.266, 0.038, 0.040, 0.427, and 0.775, respectively. When n1=n2=30 and ρ=0.7, the empirical powers of HT, RST, ARST, MAX, and MIN2 are 0.643, 0.055, 0.064, 0.384, and 0.980, respectively. For Laplace distribution, the power increase for MIN2 is sometimes more than 10% over other tests. For example, for scenario (b) when n1=n2=25 and ρ=0.3, the empirical powers of HT, RST, ARST, MAX, and MIN2 are 0.439, 0.144, 0.151, 0.498, and 0.72, respectively. When n1=n2=25 and ρ=0.7, the empirical powers of HT, RST, ARST, MAX, and MIN2 are 0.895, 0.182, 0.190, 0.538, and 0.997, respectively.
Fig. 1
Download: JPG
larger image

Left:ρ=0.3, right:ρ=0.7; the norminal significance level is 0.05 and 1 000 replicates are conducted.
Fig. 1 The power values of HT, RST, ARST, MAX, and MIN2 when the data are generated from the ten-dimensional Log-normal distribution


Fig. 2
Download: JPG
larger image

Left:ρ=0.3, right:ρ=0.7; the norminal significance level is 0.05 and 1 000 replicates are conducted.
Fig. 2 The empirical power values of HT, RST, ARST, MAX, and MIN2 when the data are generated from the ten-dimensional Laplace distribution

Next, we consider the influences of large sample size and dimension on the efficacy of our MIN2. The simulation data are generated from (4), where $\epsilon$ follows Laplace distribution with mean vector 0 and covariance matrix (Δij), where Δii=1 for i∈{1, 2, …, k} and Δij=ρ=0.3(0.7) for ij∈{1, 2, …, k}. Here we consider two types of alternative hypotheses:
(c)(β1=…=βk/2=0.05, βk/2+1=…=βk=-0.05)T;
(d)(β1=…=βk/2=0.1, βk/2+1=…=βk=0)T.
The results are shown in Table 3. It can be seen that the power of MIN2 increases with the sample size when the dimension is fixed. For example, when k=20 and ρ=0.3 under scenario(c), the empirical powers of HT, RST, ARST, MAX, and MIN2 are 0.137, 0.055, 0.054, 0.120, and 0.262 for n1=n2=100 and 0.270, 0.052, 0.052, 0.151, and 0.609 for n1=n2=200, respectively. Similarly, the power of MIN2 rises drastically with the increment of the dimension relative to other tests when the sample size is fixed. For example, when n1=n2=100 and ρ=0.7 under scenario(d), the powers of all the tests are 0.234, 0.088, 0.091, 0.148, and 0.480 for k=10, 0.344, 0.093, 0.092, 0.153, and 0.657 for k=20, and 0.434, 0.105, 0.106, 0.155, and 0.808 for k=30, respectively. So, the performance of our MIN2 is superior to the other tests in the two cases when the sample size or dimension becomes larger.
Table 3
Table 3 The empircial power results of HT, RST, ARST, MAX, and MIN2 when the data are generated from the k-dimensional Laplace distribution with large sample size
n1=n2 k ρ=0.3 ρ=0.7
HT RST ARST MAX MIN2 HT RHT ARST MAX MIN2
Power (β1=…=βk/2=0.05, βk/2+1=…=βk=-0.05)
100 10 0.119 0.048 0.047 0.110 0.186 0.230 0.053 0.055 0.108 0.479
20 0.137 0.055 0.054 0.120 0.262 0.333 0.042 0.042 0.113 0.675
30 0.163 0.058 0.057 0.124 0.348 0.441 0.055 0.055 0.114 0.789
200 10 0.199 0.046 0.047 0.134 0.396 0.454 0.052 0.051 0.141 0.816
20 0.270 0.052 0.052 0.151 0.609 0.678 0.053 0.053 0.145 0.983
30 0.381 0.044 0.044 0.157 0.793 0.811 0.055 0.055 0.156 0.996
Power (β1=…=βk/2=0.1, βk/2+1=…=βk=0)
100 10 0.116 0.123 0.124 0.162 0.231 0.234 0.088 0.091 0.148 0.480
20 0.156 0.131 0.134 0.197 0.305 0.344 0.093 0.092 0.153 0.657
30 0.166 0.148 0.148 0.212 0.360 0.434 0.105 0.106 0.155 0.808
200 10 0.224 0.184 0.184 0.249 0.426 0.441 0.099 0.101 0.221 0.809
20 0.309 0.188 0.190 0.279 0.613 0.691 0.104 0.104 0.241 0.979
30 0.391 0.205 0.205 0.308 0.803 0.810 0.123 0.124 0.267 0.996
Note: The nominal significance level is 0.05 and 1 000 replicates are conducted.

Table 3 The empircial power results of HT, RST, ARST, MAX, and MIN2 when the data are generated from the k-dimensional Laplace distribution with large sample size

3 ApplicationWe apply the HT, RST, ARST, MAX, and MIN2 to the data on the aging human brain [3]. A total of 30 samples are divided into two groups on account of age. The ages of subjects in group 1 are less than 73 and those in group 2 are larger than 73, where the threshold of 73 is suggested by the authors of Ref.[3]. The aim is to investigate the difference between the two groups with gender as a covariate. Six gene chips (accession number), CYP11B1, CYP11B2, D26561, CEACAM7, ESRRB, and MMP15, are treated as multiple endpoints. Figure 3 shows the box-plots of six gene chips after removing the effect of gender. It is most likely that there exists difference between the two groups. Furthermore, the average values of three gene chips, CY11B1, D26561, and CEACAM7, of group 1 are less than those of group 2, but for the other gene chips, CYP11B2, ESRRB and MMP15, the results are contrary. We carry out the HT, RST, ARST, MAX, and MIN2 to detect the difference between the two groups and the p-values of the above five tests are 0.409, 0.782, 0.794, 0.243, and 0.024, respectively. Evidently, except for MIN2, the other tests fail to detect the difference between the two groups after removing effect of gender at the nominal level of 0.05.
Fig. 3
Download: JPG
larger image


Fig. 3 The box-plots of six gene chips after covariate adjustment in the aging human brain

4 ConclusionStudies involving multiple outcomes are fairly common in many research areas. Many procedures including parametric and nonparametric ones have been developed in the literature without considering covariates. Actually in applications, the auxiliary covariates may often be recorded on each subject. If some covariates are associated with outcomes, the precision may be improved by adjusting for this relationship. In this work, we propose an MIN2 test to compare the difference between two groups for multiple outcomes with covariate adjustment. Through the simulation studies, the MIN2 test controls the type Ⅰ error rate very well and has superior power to other existing nonparametric tests.
References
[1] Brunner E, Domhof S, Langer F. Nonparametric analysis of longitudinal data in factorial Experiments[M]. New York: Wiley, 2002.
[2] Li Z, Cao F, Zhang J, et al. Summation of absolute value test for multiple outcome comparison with moderate effect[J]. Journal of Systems Science and Complexity, 2013, 26(3): 462-469. DOI:10.1007/s11424-012-0272-5
[3] Lu T, Pan Y, Kao S Y, et al. Gene regulation and DNA damage in the ageing human brain[J]. Nature, 2004, 429(6994): 883-891. DOI:10.1038/nature02661
[4] Hotelling H. The generalization of Student's ratio[J]. The Annals of Mathematical Statistics, 1931, 2(3): 360-378. DOI:10.1214/aoms/1177732979
[5] O'Brien P C. Procedures for comparing samples with multiple endpoints[J]. Biometrics, 1984, 40(4): 1079-1087. DOI:10.2307/2531158
[6] Huang P, Tilley B C, Woolson R F, et al. Adjusting O'Brien's test to control type Ⅰ error for the generalized nonparametric Behrens-Fisher problem[J]. Biometrics, 2005, 61(2): 532-539. DOI:10.1111/biom.2005.61.issue-2
[7] Liu A, Li Q, Liu C, et al. A rank-based test for comparison of multidimensional outcomes[J]. Journal of the American Statistical Association, 2010, 105(490): 578-587. DOI:10.1198/jasa.2010.ap09114
[8] Grouin J M, Day S, Lewis J. Adjustment for baseline covariates:an introductory note[J]. Statistics in medicine, 2004, 23(5): 697-699. DOI:10.1002/(ISSN)1097-0258
[9] Koch G G, Tangen C M, Jung J W, et al. Issues for covariance analysis of dichotomous and ordered categorical data from randomized clinical trials and non-parametric strategies for addressing them[J]. Statistics in medicine, 1998, 17(15/16): 1863-1892.
[10] Lesaffre E, Senn S. A note on non-parametric ANCOVA for covariate adjustment in randomized clinical trials[J]. Statistics in medicine, 2003, 22(23): 3583-3596. DOI:10.1002/(ISSN)1097-0258
[11] Tsiatis A A, Davidian M, Zhang M, et al. Covariate adjustment for two-sample treatment comparisons in randomized clinical trials:A principled yet flexible approach[J]. Statistics in medicine, 2008, 27(23): 4658-4677. DOI:10.1002/sim.v27:23
[12] Zhang M, Tsiatis A A, Davidian M. Improving efficiency of inferences in randomized clinical trials using auxiliary covariates[J]. Biometrics, 2008, 64(3): 707-715. DOI:10.1111/j.1541-0420.2007.00976.x
[13] McArdle B H, Anderson M J. Fitting multivariate models to community data:a comment on distance-based redundancy analysis[J]. Ecology, 2001, 82(1): 290-297. DOI:10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2
[14] Li Q, Wacholder S, Hunter D J, et al. Genetic background comparison using distance-based regression, with applications in population stratification evaluation and adjustment[J]. Genetic epidemiology, 2009, 33(5): 432-441. DOI:10.1002/gepi.v33:5
[15] Pan W. Relationship between genomic distance-based regression and kernel machine regression for multi-marker association testing[J]. Genetic epidemiology, 2011, 35(4): 211-216.
[16] Wessel J, Schork N J. Generalized genomic distance-based regression methodology for multilocus association analysis[J]. The American Journal of Human Genetics, 2006, 79(5): 792-806. DOI:10.1086/508346
[17] Zapala M A, Schork N J. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables[J]. Proceedings of the national academy of sciences, 2006, 103(51): 19430-19435. DOI:10.1073/pnas.0609333103


相关话题/检验 图片 北京 数据 信息

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于MODIS数据的黄河源区土壤干湿状况时空格局变化
    刘馨1,宋小宁1,冷佩2,夏龙11.中国科学院大学资源与环境学院,北京100049;2.中国农业科学院农业资源与农业区划研究所,北京1000812017年11月23日收稿;2018年3月17日收修改稿基金项目:国家重点研发计划项目(2016YFC0501801)资助通信作者:宋小宁,E-mail:s ...
    本站小编 Free考研考试 2021-12-25
  • 基于时间序列DMSP/OLS夜间灯光数据的GDP预测模型
    顾鹏程1,2,王世新1,周艺1,刘文亮1,尚明1,21.中国科学院遥感与数字地球研究所,北京100101;2.中国科学院大学资源与环境学院,北京1000492017年12月26日收稿;2018年3月29日收修改稿基金项目:国家重点研发计划(2017YFB0503805)和高分辨率对地观测系统重大专项 ...
    本站小编 Free考研考试 2021-12-25
  • 北京张坊地区中上元古界中岩溶发育与构造作用
    刘建明1,张玉修1,曾璐1,琚宜文1,芮小平2,乔小娟11.中国科学院大学地球与行星科学学院,北京100049;2.中国科学院大学资源与环境学院,北京1000492017年11月3日收稿;2018年3月23日收修改稿基金项目:北京岩溶水资源勘查评价工程项目(BJYRS-ZT-03)和中国科学院大学校 ...
    本站小编 Free考研考试 2021-12-25
  • 城市功能区语义信息挖掘与遥感分类
    李娅1,2,刘亚岚1,任玉环1,王智灏1,2,曲畅31.中国科学院遥感与数字地球研究所,北京100101;2.中国科学院大学,北京100049;3.北京大学地球与空间科学学院遥感与地理信息系统研究所,北京1008712017年10月24日收稿;2018年1月19日收修改稿基金项目:国家自然科学基金青 ...
    本站小编 Free考研考试 2021-12-25
  • 中国北方农牧交错带草本植物δ15N梯度变化及其对环境信息的指示
    刘贤赵1,2,张勇1,宿庆3,李振国1,冯腾1,宋焱11.湖南科技大学资源环境与安全工程学院,湖南湘潭411201;2.中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,南京210000;3.湖南科技大学生命科学学院,湖南湘潭4112012017年7月24日收稿;2017年11月30日收修 ...
    本站小编 Free考研考试 2021-12-25
  • 基于车载激光扫描数据的城区道路自动提取
    赵海鹏1,2,习晓环1,王成1,雷钊1,21.中国科学院遥感与数字地球研究所中国科学院数字地球重点实验室,北京100094;2.中国科学院大学资源与环境学院,北京1000492017年7月24日收稿;2017年9月30日收修改稿基金项目:国家科技部重大科学仪器设备开发专项(2013YQ120343) ...
    本站小编 Free考研考试 2021-12-25
  • 一种基于深度学习的电磁信息泄漏检测方法*
    计算机、信息化通信终端等电子信息设备在处理信息过程中,会不可避免地向周围环境发射电磁波,产生无意的、非主观通信的电磁辐射。由于这些无意发射的电磁信号不仅频谱成份丰富,而且携带着大量有用信息,存在信息泄漏隐患。令人深思的是,目前对网络攻击、系统安全漏洞和计算机病毒等网络信息安全问题非常重视,却对信息设 ...
    本站小编 Free考研考试 2021-12-25
  • 分离式飞机应急数据记录跟踪系统设计与试验*
    在法航AF447和马航MH370等海上空难中,由于飞行数据记录器(FlightDataRecorder,FDR),也称“黑匣子”,固定在机身中,空难发生时记录器随飞机残骸沉入海底,给打捞和定位造成困难,甚至无法打捞,严重制约了及时救援和事故调查。特别是马航MH370事故,数国历时几年竭尽全力的救援和 ...
    本站小编 Free考研考试 2021-12-25
  • 基于中心-对数半长的区间数据主成分分析*
    主成分分析(PrincipalComponentAnalysis,PCA)是一种对包含多个变量的平面数据表进行最佳综合简化的多元分析方法[1]。其主要目的是在保证数据信息损失最小的前提下,对多元数据进行降维处理,基本原理是通过正交变换将p个相互关联的变量转换为p个相互无关的"主成分",并省却数据变异 ...
    本站小编 Free考研考试 2021-12-25
  • 连续变迎角试验数据自适应分段拟合滤波方法*
    在常规高超声速风洞测力试验[1-3]中,常采用阶梯变迎角试验方式,即利用模型机构阶梯地改变试验模型的迎角,天平测量每个迎角台阶上试验模型的气动力,取一段时间进行平均,获取该模型在对应迎角的气动载荷。利用模型机构实现阶梯变迎角过程中产生较快的启动、停止,试验模型因而产生较大的振动,需要在每个迎角台阶停 ...
    本站小编 Free考研考试 2021-12-25