造血作用可以产生所有类型的血细胞,包括:红细胞、血小板、巨噬细胞和淋巴细胞等。这些血细胞来源于具有自我更新和多向分化潜能的造血干祖细胞(hematopoietic stem and progenitor cells,HSPCs)。在脊椎动物中,最早的新生造血干祖细胞,是由主动脉-性腺-中肾区(aorta-gonad-mesonephros,AGM)的动脉腹侧的生血内皮经过内皮-造血转化过程产生的。随后,造血干祖细胞迁移到哺乳动物的胎肝 (fetal liver,FL)或斑马鱼的尾部造血组织 (caudal hematopoietic tissue,CHT)进行快速扩增和分化。研究发现:小鼠中AGM区刚产生的造血干祖细胞处于非成熟状态,迁移到胎肝后,才能完全获得造血相关的转录组特性。此外,AGM和胎肝中的造血干祖细胞的移植重建能力不同:AGM区产生的造血干细胞对免疫排斥更加敏感,只有移植到新生小鼠中才能进行移植重建。因此,研究各个造血组织中,处于不同发育阶段的造血干祖细胞,比较其染色质开放状态及基因调控差异,将为体外诱导获得具有较好移植重建能力的造血干祖细胞提供理论指导。
2020年8月5日,中国科学院大学博士生导师、中国科学院动物研究所研究员刘峰团队与同济大学张勇教授团队合作在BLOOD杂志发表了题为Smarca5 mediated epigenetic programming facilitates fetal hematopoietic stem and progenitor cell development in vertebrates的论文。该工作发现:在产生和扩增/分化等不同发育阶段的造血干祖细胞中,染色质可接近性和转录组存在动态变化。深入机制探索发现,染色质重塑因子Smarca5通过与核仁蛋白Nucleolin相互作用,促进染色质重塑,调控造血相关的转录因子与基因组结合,进而促进造血干祖细胞发育。
研究人员利用模式动物斑马鱼,聚焦染色质可接近性和转录组,研究胚胎期两个造血组织中造血干祖细胞的基因表达动态调控。通过对斑马鱼AGM区新产生的造血干祖细胞以及处于扩增/分化阶段的CHT区造血干祖细胞进行ATAC-seq和 RNA-seq分析,发现染色质开放性在AGM区和CHT区造血干祖细胞中存在动态变化,启动子区的染色质开放程度对于基因的转录影响更为明显。与AGM区新生造血干祖细胞相比,造血相关基因的染色质开放性在CHT区造血干祖细胞中更加富集。同时,造血相关基因的表达水平在CHT区造血干祖细胞中更高。以上结果暗示,CHT区造血干祖细胞具有更加稳定和特异的造血能力。
为了寻找调控造血干祖细胞发育过程中染色质状态变化的关键染色质重塑因子,研究人员结合染色质重塑因子在AGM区和CHT区造血干祖细胞中的表达以及基因敲低/敲除实验,证实Smarca5通过调节染色质可接近性促进CHT区造血干祖细胞的增殖和分化。此外,通过质谱检测和功能性实验验证,研究人员发现核仁蛋白Nucleolin可以与Smarca5相互作用,并调控CHT区造血干祖细胞扩增/分化。进一步机制研究证明,Nucleolin有助于Smarca5介导的染色质重塑,进而影响与造血干祖细胞增殖和分化相关的转录因子(包括:Klf1和Spi1)与基因组的结合。例如:Smarca5缺失影响了Spi1在bcl11ab启动子区的结合,导致bcl11ab表达下调, 进而造成CHT区造血干祖细胞发育缺陷。
综上所述,该研究揭示了表观遗传调控在各造血组织中不同阶段的造血干祖细胞发育的重要性。该研究得到了国家重点研发计划、国家自然科学基金以及中国科学院的资助。
原文链接:https://doi.org/10.1182/blood.2020005219
Smarca5介导的表观遗传调控促进胚胎期造血干祖细胞的发育
图注:在产生和扩增/分化等不同发育阶段的造血干祖细胞中,染色质可接近性和转录组存在动态变化,并伴随着染色质重塑因子的动态表达。其中,染色质重塑因子Smarca5通过与核仁蛋白Nucleolin相互作用,促进染色质重塑,调控造血相关的转录因子(包括:Klf1和Spi1)与基因组结合,进而促进造血干祖细胞发育。例如:Smarca5缺失影响了Spi1在bcl11ab启动子区的结合,导致bcl11ab表达下调, 进而造成CHT区造血干祖细胞发育缺陷。
责任编辑:余玉婷
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
动物所刘峰团队合作揭示染色质重塑因子Smarca5促进胚胎期造血干祖细胞发育
本站小编 Free考研考试/2021-12-25
相关话题/细胞 基因 组织 新生 中国科学院
上海硅酸盐所在肿瘤治疗与组织再生一体化生物玻璃研究方面取得新进展
光热治疗(PTT)作为一种新型肿瘤治疗方式显示了其独特的优势,但在常规的PTT中,很难测量肿瘤部位的准确温度。PTT温度过低不能杀死肿瘤细胞,而过高的温度又可能烫伤周围的正常组织。因此,在PTT过程中,原位监测温度以确定PTT治疗的最佳温度,同时修复PTT治疗时可能产生的对周边正常组织烫伤是需要解决 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25动物研究所合作揭示核心节律蛋白延缓干细胞衰老及促进再生的新功能
生物钟的调控机制在不同物种中高度保守,它使哺乳动物的生理和行为呈现出与外界24小时昼夜循环一致的节律性变化,从而维持机体组织和细胞生理活动的动态平衡。越来越多的证据显示,节律调控的失衡与衰老密切相关。研究表明,成体干细胞的衰老和耗竭是个体衰老的重要标志之一,也是引发人类退行性疾病(如退行性关节病变) ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25上海药物所发现miR-30b-5p在细胞核内抑制TFEB介导的溶酶体生成及自噬
自噬与神经退行性疾病、心血管疾病以及肿瘤等诸多疾病密切相关。自噬底物与溶酶体融合后并最终通过溶酶体内的酸性水解酶降解,因此溶酶体的生成在自噬过程中至关重要。 近年来,有诸多研究发现微小核酸(miRNA)能够通过靶向不同的自噬溶酶体相关基因调节自噬过程,但这些研究发现miRNA均是在细胞质中通过经典 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25遗传发育所玉米细胞质雄性不育研究取得新进展
植物细胞质雄性不育是一个广泛存在并具有重要应用价值的生物学现象。在雄性不育材料中,花粉粒败育但其他组织的生长发育不受影响,因此细胞质雄性不育被广泛应用于杂交种生产。细胞质雄性不育也是研究细胞核与线粒体相互作用的利器,不育基因由线粒体基因组编码,而大部分恢复基因由核基因组编码,两套不同的基因组如何协同 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25上海药物所通过活细胞表面糖链编辑技术实现药物受体糖基化功能研究
2020年6月1日,中科院上海药物研究所黄蔚课题组在Nature子刊NatureChemicalBiology上发表了题为“SelectiveN-glycaneditingonlivingcellsurfacestoprobeglycoconjugatefunction”的文章,报道了一种选择性编辑 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25遗传发育所焦雨铃研究组发现干细胞谱系自我维持的新机制
细胞命运决定是发育生物学的基本问题。植物中细胞命运虽然灵活性较高,但也高度依赖于细胞谱系:即细胞经历过的状态决定当前状态和未来发育潜能。中国科学院遗传与发育生物学研究所焦雨铃课题组长期研究植物侧生分生组织的形成。侧生分生组织位于高等植物叶腋,能够形成新的生长点,与顶端分生组织具有类似的器官发生能力。 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25华南植物园研究发现沉默转基因的激活不依赖于拷贝数和DNA过甲基化的变化
转基因表达的稳定性在种苗商业化生产中具有重要作用,然而基因沉默现象影响着这种稳定性的产生与维持。 中国科学院大学博士生导师、中科院华南植物园研究员区永祥研究团队长期致力于多基因定点叠加技术的研发以加快分子育种进程。要获得定点叠加的多基因材料并非易事,在烟草中的实验结果表明,其效率约为5%,可是在这 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25遗传发育所屠强研究组开发Decode-seq方法显著提高差异表达基因分析的准确性
鉴定差异表达基因是许多生物医学研究项目的基础步骤,利用转录组进行差异表达(DifferentialExpression,DE)分析是目前最主流的方法,得到了广泛应用。例如,两个常用于转录组DE分析的算法edgeR和DESeq2已经被引用了超过上万次。 在DE分析中,如果使用的生物学重复数不足,会影 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25遗传发育所高彩霞研究组建立植物基因组引导编辑技术体系“Plant Prime Editing”
基因组编辑技术可以定向修饰植物基因组,从而大大加速植物育种的进程,是实现作物精准育种的重要技术突破。然而,作物的许多重要农艺性状是由基因组中的单个或少数核苷酸的改变或突变造成的。基于CRISPR/Cas系统的基因组编辑,可利用外源修复模板通过同源重组介导的修复方式(HDR)实现目标基因特定核苷酸的改 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25遗传发育所杨维才研究组发现转录抑制机制决定被子植物中央细胞命运
被子植物是当今植物界中、种类最多、分布最广、适应性最强的类群。有别于其它植物类群,被子植物进化出了独特的双受精生殖模式,即雄配子体花粉中的两个精细胞分别与雌配子体内部的卵细胞和中央细胞融合,并进一步发育成胚和胚乳。被子植物双受精机制的出现导致了胚乳的产生,能够为新生的胚提供必要的养分从而确保胚的正常 ...中国科学院大学通知公告 本站小编 Free考研考试 2021-12-25