删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国科学院大学研究生导师教师师资介绍简介-毛文吉

本站小编 Free考研考试/2020-04-28

基本信息
毛文吉
研究员、博士生导师
电子邮件:wenji.mao@ia.ac.cn
联系电话:
通信地址:北京中关村东路95号中国科学院自动化研究所
邮政编码:100190
部门/实验室:复杂系统管理与控制国家重点实验
研究领域人工智能,网络大数据分析挖掘,社会计算,情报安全信息学

招生信息
1. [学科专业]:模式识别与智能系统,[研究方向]:人工智能理论与方法
2. [学科专业]:社会计算,[研究方向]:互联网大数据解析



教育背景
学历美国南加州大学计算机科学系,博士
中国科学院数学研究所,硕士
吉林大学计算机科学与技术系,学士


学位博士


工作经历
工作简历


1990-1993年,在陆汝钤院士的指导下,就读于中国科学院数学研究所。参与了国家重点攻关项目(天马)专家系统开发环境的研制。该项目获国家科技进步二等奖和中国科学院科技进步一等奖。

1993-1999年,在中国科学院研究生院计算机学部任职,1996年起任讲师。主持系统开发实验室工作并主讲人工智能相关课程,期间参与了多项国家课题的研究与开发。

1999-2001年,赴德国人工智能研究中心(DFKI)进行合作研究,2001年被聘为DFKI研究科学家。为欧盟四国联合项目SAID和DFKI研究项目Presence的主要研制人员。

2001-2006年,在美国南加州大学 Institute for Creative Technologies(USC/ICT)任研究助理,是美国军方两项重大研究计划MRE和SASO-ST中社会模拟技术的第一研制人。博士工作提出第一个基于认知科学和心理学的社会推理计算模型。

2006年9月加入中国科学院自动化研究所,任副研究员。2008年任硕士生导师,2012年至今任研究员、博士生导师。主持多项国家自然科学基金项目、中科院知识创新工程重大项目课题以及与国家核心部门的合作项目。
2014年至今担任互联网大数据与安全信息学研究中心副主任,2015年10月起被聘为中国科学院大学岗位教授。




社会任职











担任《ACM Computing Surveys》、《IEEE Intelligent Systems》期刊编委,《软件学报》责任编委,多次应邀主编SCI/SSCI学术期刊专刊和组织本领域国际学术研讨会,任会议主席10余次及100多个国际会议的程序委员会委员或Session主席。曾任ACM北京分会主席、中国人工智能学会理事,现任中国计算机学会大数据专家委、服务计算专委会委员,IEEE SMC 学会Homeland Security专委会委员等职。
担任国际期刊审稿人:ACM Computing Surveys、ACM Transactions on Intelligent Systems and Technology、Computational Intelligence、Computational and Mathematical Organization Theory、IEEE Intelligent Systems、IEEE Transactions on Big Data、IEEE Transactions on Knowledge and Data Engineering、IEEE Transactions on Neural Networks and Learning Systems、Journal of Autonomous Agents and Multi-Agent Systems、Social Network Analysis and Mining Journal等
担任学术会议程序委员会委员(或Session主席):AAAI、AAMAS、Agent、AMT、CCAI、CCDM、CCFBigdata、CCIS、EUROMEDIA、FOSINT-SI、GAMEON、GAMEON-NA、IEEE ISI、IJCAI、IVA、NCSC、PAAMS、PAISI、PRIMA、SID、SMP、WI等













专利与奖励

中国自动化学会“科技进步一等奖”(排名第三)
中国人工智能学会“吴文俊人工智能科技创新二等奖”(排名第一)
美国南加州大学“Outstanding Academic Achievement Award”(2006)



出版信息


























主要期刊论文及论著:

[1] Q. Kong, W. Mao, G. Chen, et al. Exploring Trends and Patterns of Popularity Stage Evolution in Social Media. IEEE Transactions on Systems, Man and Cybernetics: Systems, in press.
[2] J. Lin, Q. Kong, W. Mao, et al. A Topic Enhanced Approach to Detecting Multiple Standpoints in Web Texts. Information Sciences, 501:483-494, 2019.
[3] G. Chen, Q. Kong, N. Xu and W. Mao. NPP: A Neural Popularity Prediction Model for Social Media Content. Neurocomputing, 333:221-230, 2019.
[4] J. Lin, W. Mao and D. Zeng. Personality-based Refinement for Sentiment Classification in Microblog. Knowledge-Based Systems, 132:204-214, 2017.
[5] L. Zhou, L. Kaati, W. Mao, et al (Eds.). Intelligence and Security Informatics. IEEE Press, 2015.
[6] D. Zeng and W. Mao. Supporting Global Collective Intelligence via Artificial Intelligence. IEEE Intelligent Systems, 29(2):2-4, March/April, 2014.
[7] P. Su, W. Mao and D. Zeng. An Empirical Study of Cost-Sensitive Learning in Cultural Modeling. Information Systems and e-Business Management, 11(3):437-455, 2013.
[8] C. Yang, W. Mao, X. Zheng, et al (Eds.). Intelligent Systems for Security Informatics. Elsevier, February, 2013.
[9] W. Mao and F. Wang. Advances in Intelligence and Security Informatics. Academic Press, April, 2012.
[10] W. Mao and J. Gratch. Modeling Social Causality and Responsibility Judgment in Multi-Agent Interactions. Journal of Artificial Intelligence Research, 44:223-273, May, 2012.
[11] W. Mao, J. Gratch and X. Li. Probabilistic Plan Inference for Group Behavior Prediction. IEEE Intelligent Systems, 27(4):27-36, July/August, 2012.
[12] P. Su, W. Mao, D. Zeng, et al. Mining Actionable Behavioral Rules. Decision Support Systems, 54(1):142-152, December, 2012.
[13] X. Li, W. Mao and D. Zeng. Forecasting Complex Group Behavior via Multiple Plan Recognition. Frontiers of Computer Science, 6(1):102-110, 2012.
[14] Y. Wang, W. Mao, D. Zeng, et al. Listwise Approaches Based on Feature's Ranking Discovery. Frontiers of Computer Science, 6(6):647-659, 2012.
[15] D. Zhang, W. Mao, J. Zhan, et al. Special Issue on Social Computing and E-business. Information Systems and E-Business Management, 10(2):161-163, 2012.
[16] W. Mao, A. Ge and X. Li. From Causal Scenario to Social Causality: An Attributional Approach. IEEE Intelligent Systems, 26(6):48-57, November/December, 2011.
[17] W. Mao, A. Tuzhilin and J. Gratch. Social and Economic Computing. IEEE Intelligent Systems, 26(6):19-21, November/December, 2011.
[18] Q. Yang, Z. Zhou, W. Mao, et al. Social Learning. IEEE Intelligent Systems, 25(4):9-11, July/August, 2010.

[19] W. Mao and J. Gratch. Modeling Social Inference in Agent Society. AI & Society, 24(1):5-11, 2009.

[20] X. Li, W. Mao, D. Zeng, et al. Performance Evaluation of Machine Learning Methods in Cultural Modeling. Journal of Computer Science and Technology, 24(6):1010-1017, November, 2009.

[21] B. Martinovski and W. Mao. Emotion as an Argumentation Engine: Modeling the Role of Emotion in Negotiation. Group Decision and Negotiation, 18(3):235-259, 2009.

[22] F. Wang, N. Sun, W. Mao, et al. Special Section on International Partnership Program. Journal of Computer Science and Technology, 24(6):997-999, November, 2009.
[23] F. Wang, D. Zeng, K. Carley and W. Mao. Social Computing: From Social Informatics to Social Intelligence. IEEE Intelligent Systems, 22(2):79-83, March/April, 2007.

[24] J. Gratch, W. Mao and S. Marsella. Modeling Social Emotions and Social Attributions. In: R. Sun (Ed.), Cognition and Multi-Agent Interaction: Extending Cognitive Modeling to Social Simulation, pp.219-251. Cambridge University Press, January, 2006.
[25] R. Lu, C. Cao, Y. Chen, W. Mao, et al. A PNLU Approach to Automatic Generation of ICAI Systems. 中国科学 (A辑), 38(suppl.):1-11, 1995.
[26] 林俊杰, 王磊, 毛文吉. 面向社会事件的半监督自训练多方立场分析. 模式识别与人工智能, 31(12):1074?1084, 2018.
[27] 皇甫璐雯, 毛文吉. 一种基于OCC模型的文本情感挖掘方法. 智能系统学报, 12(5):645-652, 2017.

[28] 孔庆超, 毛文吉. 基于动态演化的讨论帖流行度预测. 软件学报, 25(12):2767?2776, 2014.
[29] 毛文吉, 曾大军. 基于认知和社会心理学的行为评估与情感建模. 社会物理学: 社会治理, pp.24-37. 科学出版社, 2014.
[30] 王飞跃, 李晓晨, 毛文吉等. 社会计算的基本方法与应用. 浙江大学出版社, 2012.
[31] 毛文吉, 曾大军, 王飞跃. 社会计算的研究现状与未来. 中国计算机学会通讯, 7(12):8-11, 2011.
[32]毛文吉. 多智能体交互环境下的社会推理计算模型. 模式识别与人工智能, 21(6):713-720, 2008.

[33]毛文吉. 基于MASIM的社会推理与计算系统. 系统科学与数学, 28(11):1432-1440, 2008

[34]毛文吉, 陆汝钤. 基于SELD描述语言的英文文本知识自动获取. 计算机学报, 21(suppl.):105-111, 1998.

[35]毛文吉, 熊竟, 董占球. 存储与处理合一的智能系统. 计算机研究与发展, 34(2):118-123, 1997.
主要国际会议论文:

[36] P. Wei, J. Zhao and W. Mao. Effective Inter-Clause Modeling for End-to-End Emotion-Cause Pair Extraction. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL'20), accept for publication.
[37] N. Xu, Z. Zeng and W. Mao. Reasoning with Multimodal Sarcastic Tweets via Modeling Cross-Modality Contrast and Semantic Association. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL'20), accept for publication.
[38] P. Wei, N. Xu and W. Mao. Modeling Conversation Structure and Temporal Dynamics for Jointly Predicting Rumor Stance and Veracity. Proceedings of the 2019 International Conference on Empirical Methods in Natural Language Processing (EMNLP'19). ACL Press, 2019.

[39] N. Xu, W. Mao and G. Chen. Multi-Interactive Memory Network for Aspect Based Multimodal Sentiment Analysis. Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI'19), pp.371-378. AAAI Press, 2019.
[40] P. Wei, W. Mao and G. Chen. A Topic-Aware Reinforced Model for Weakly Supervised Stance Detection. Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI'19), pp.7249-7256. AAAI Press, 2019.
[41] P. Wei and W. Mao. Modeling Transferable Topics for Cross-Target Stance Detection. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'19), pp.1173-1176. ACM Press, 2019.
[42] X. Xiao, P. Wei, W. Mao, et al. Context-Aware Multi-View Attention Networks for Emotion Cause Extraction. Proceedings of the 2019 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'19), pp.128-133. IEEE Press, 2019.
[43] N. Xu, W. Mao and G. Chen. A Co-Memory Network for Multimodal Sentiment Analysis. Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'18), pp.929-932. ACM Press, 2018.
[44] P. Wei, J. Lin and W. Mao. Multi-Target Stance Detection via a Dynamic Memory-Augmented Network. Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'18), pp.1229-1232. ACM Press, 2018.
[45] G. Chen, N. Xu and W. Mao. An Encoder-Memory-Decoder Framework for Sub-Event Detection in Social Media. Proceedings of the 27th ACM International Conference on Information and Knowledge Management (CIKM'18), pp.1575-1578. ACM Press, 2018.
[46] N. Xu, G. Chen and W. Mao. MNRD: A Merged Neural Model for Rumor Detection in Social Media. Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN'18), pp.885-891, 2018.
[47] P. Wei, W. Mao and D. Zeng. A Target-Guided Neural Memory Model for Stance Detection in Twitter. Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN'18), pp.2068-2075, 2018.
[48] G. Chen, Q. Kong, W. Mao, et al. A Partition and Interaction Combined Model for Social Event Popularity Prediction. Proceedings of the 2018 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'18), pp.214-219. IEEE Press, 2018.
[49] G. Chen, W. Mao, Q. Kong, et al. Event Detection for Social Media by Joint Learning with Keyword Extraction. Proceedings of the 2018 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'18), pp.232-237. IEEE Press, 2018.
[50] J. Lin, W. Mao and Y. Zhang. An Enhanced Topic Modeling Approach to Multiple Stance Identification. Proceedings of the 26th ACM International Conference on Information and Knowledge Management (CIKM'17), pp.2167-2170. ACM Press, 2017.
[51] N. Xu and W. Mao. MultiSentiNet: A Deep Semantic Network for Multimodal Sentiment Analysis. Proceedings of the 26th ACM International Conference on Information and Knowledge Management (CIKM'17), pp.2399-2402. ACM Press, 2017.
[52] Y. Zhang, W. Mao and D. Zeng. Topic Evolution Modeling in Social Media Short Texts based on Recurrent Semantic Dependent CRP. Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'17), pp.119-124. IEEE Press, 2017.
[53] J. Lin, W. Mao and D. Zeng. Topic and User based Refinement for Competitive Perspective Identification. Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'17). IEEE Press, 2017.
[54] X. Kong and W. Mao. Ranking Events based on User Relevant Query. Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'17). IEEE Press, 2017.
[55] G. Chen, Q. Kong and W. Mao. An Attention-based Neural Popularity Prediction Model for Social Media Events. Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'17). IEEE Press, 2017.
[56] G. Chen, Q. Kong and W. Mao. Online Event Detection and Tracking in Social Media based on Neural Similarity Metric Learning. Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'17). IEEE Press, 2017.
[57] Y. Zhang, W. Mao and J. Lin. Dynamic Topic Modeling in Short Texts. Proceedings of the 8th IEEE International Conference on Big Knowledge (IEEE ICBK'17), pp.315-319. IEEE Press, 2017.
[58] C. Cui, W. Mao, X. Zheng, et al. Mining User Intents in Online Interactions: Applying to Discussions about Medical Event on Sina Weibo Platform. Proceedings of the 2017 International Conference for Smart Health (ICSH'17), pp.177-183. Springer, 2017.
[59] N. Xu and W. Mao. A Residual Merged Neutral Network for Multimodal Sentiment Analysis. Proceedings of the 2017 IEEE International Conference on Big Data Analysis (IEEE ICBDA'17). IEEE Press, 2017.
[60] Y. Zhang, W. Mao and D. Zeng. A Non-Parametric Topic Model for Short Texts Incorporating Word Coherence Knowledge. Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM'16), pp. 2017-2020. ACM Press, 2016.
[61] J. Lin and W. Mao and D. Zeng. Competitive Perspective Identification via Topic based Refinement for Online Documents. Proceedings of the 2016 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'16). IEEE Press, 2016.
[62] Q. Kong, W. Mao and C. Liu. Popularity Prediction Based on Interactions of Online Contents. Proceedings of the 4th IEEE International Conference on Cloud Computing and Intelligence Systems (IEEE CCIS'16), pp.1-5. IEEE Press, 2016.
[63] J. Lin and W. Mao. Personality based Public Sentiment Classification in Microblog. Proceedings of the 2015 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'15). IEEE Press, 2015.
[64] Y. Zhang, X. Li and W. Mao. A Bottom-up Method for Constructing Topic Hierarchies from Political Media Data. Proceedings of the 2015 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'15). IEEE Press, 2015.
[65] Y. Zhang, W. Mao and D. Zeng. Constructing Topic Hierarchies from Social Media Data. Proceedings of the ICDM Workshops 2015 (ISI-ICDM'15), pp. 1015-1018. IEEE Press, 2015.
[66] Q. Kong, W. Mao, D. Zeng, et al. Predicting Popularity of Forum Threads for Public Events Security. Proceedings of the 2014 IEEE Joint Intelligence and Security Informatics Conference (JISIC'14), pp.99-106. IEEE Press, 2014.
[67] Y. Zhang, W. Mao, D. Zeng, et al. Exploring Opinion Dynamics in Security-Related Microblog Data. Proceedings of the 2014 IEEE Joint Intelligence and Security Informatics Conference (JISIC'14), pp.284-287. IEEE Press, 2014.
[68] W. Mao and J. Gratch. Modeling Social Causality and Responsibility Judgment in Multi-Agent Interactions: Extended Abstract. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (IJCAI'13), pp.3166-3170, 2013.

[69] L. Huangfu, W. Mao, D. Zeng, et al. OCC Model-Based Emotion Extraction from Online Reviews. Proceedings of the 2013 IEEE International Conference on Intelligence and Security Informatics, pp.116-121. IEEE Press, 2013.
[70] Q. Kong, W. Mao and D. Zeng. Predicting User Participation in Social Networking Sites. Proceedings of the 2013 IEEE International Conference on Intelligence and Security Informatics. IEEE Press, 2013.
[71] A. Ge, W. Mao, D. Zeng, et al. Action Knowledge Extraction from Web Text. Proceedings of the 2013 IEEE International Conference on Intelligence and Security Informatics. IEEE Press, 2013.
[72] Z. Tan, W. Mao, D. Zeng, et al. Acquiring Netizen Group's Opinions for Modeling Food Safety Events. Proceedings of the 2012 IEEE International Conference on Intelligence and Security Informatics, pp.114-119. IEEE Press, 2012.
[73] A. Ge, W. Mao, D. Zeng, et al. Extracting Action Knowledge in Security Informatics. Proceedings of the 2012 IEEE International Conference on Intelligence and Security Informatics. IEEE Press, 2012.
[74] Y. Li, W. Mao, D. Zeng, et al. Extracting Opinion Explanations from Chinese Online Reviews. Proceedings of the 2012 IEEE International Conference on Intelligence and Security Informatics. IEEE Press, 2012.
[75] P. Su, W. Mao, D. Zeng, et al. Mining Actionable Behavioral Rules from Group Data. Proceedings of the 2011 IEEE International Conference on Intelligence and Security Informatics. IEEE Press, 2011.
[76] X. Li, W. Mao, D. Zeng, et al. Forecasting Group Behavior via Multiple Plan Recognition. Proceedings of the 2011 IEEE International Conference on Intelligence and Security Informatics. IEEE Press, 2011.
[77] Y. Wang, W. Mao, D. Zeng, et al. Boosting Rank with Predictable Training Error. Proceedings of the 2011 IEEE International Conference on Intelligence and Security Informatics. IEEE Press, 2011.
[78] Z. Tan, X. Li and W. Mao. Agent-Based Modeling of Netizen Groups in Chinese Internet Events. Proceedings of the Pacific Asia Workshop on Intelligence and Security Informatics (PAISI'11), pp.43-53. Springer, 2011.
[79] X. Li, W. Mao, D. Zeng, et al. Automatic Construction of Domain Theory for Attack Planning. Proceedings of the 2010 IEEE International Conference on Intelligence and Security Informatics (IEEE ISI'10), pp.65-70. IEEE Press, 2010.

[80] P. Su, W. Mao, D. Zeng, et al. Employing Cost-Sensitive Learning in Cultural Modeling. Proceedings ofthe 2010 IEEE International Conference on Service Operations and Logistics and Informatics (IEEE SOLI'10). IEEE Press, 2010.

[81] A. Ge, W. Mao and D. Zeng. Story Extraction from the Web: A Case Study in Security Informatics. Proceedings of the 2010 IEEE International Conference on Service Operations and Logistics and Informatics (IEEE SOLI'10). IEEE Press, 2010.

[82] Y. Wang and W. Mao. FeatureRank: A Non-linear Listwise Approach with Clustering and Boosting. Proceedings of the Second IEEE Youth Conference on Information, Computing and Telecommunications (IEEE YC-ICT'10). IEEE Press, 2010.

[83]P. Su, W. Mao, D. Zeng, et al. Handling Class Imbalance Problem in Cultural Modeling, Proceedings of the 2009 IEEE International Conference on Intelligence and Security Informatics, pp.251-256. IEEE Press, 2009.

[84]X. Li, W. Mao, D. Zeng, et al. Performance Evaluation of Classification Methods in Cultural Modeling, Proceedings of the 2009 IEEE International Conference on Intelligence and Security Informatics, pp.248-250. IEEE Press, 2009.

[85]X. Li, W. Mao, D. Zeng, et al. Agent-Based Social Simulation and Modeling in Social Computing. Proceedings of the First International Workshop on Social Computing (SOCO'08), pp.401-412. Springer, 2008.

[86]X. Li, D. Zeng, W. Mao, et al. Online Communities: A Social Computing Perspective. Proceedings of the First International Workshop on Social Computing (SOCO'08), pp.355-365. Springer, 2008

[87]W. Mao and J. Gratch. Modeling Social Inference in Virtual Agents. Proceedings of the Sixth International Workshop on Social Intelligence Design (SID'07), pp.81-94, 2007.

[88]W. Mao, D. Zeng, L. Zhang, et al. Social Modeling and Reasoning for Security Informatics. Proceedings of the Pacific Asia Workshop on Intelligence and Security Informatics (PAISI'07). Springer, 2007.
[89] J. Gratch, S. Marsella and W. Mao. Towards a Validated Model of Emotional Intelligence. Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI'06), pp.1613-1616. AAAI Press, 2006.
[90] W. Mao and J. Gratch. Evaluating a Computational Model of Social Causality and Responsibility. Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS'06), pp.985-992. ACM Press, 2006.

[91]W. Mao and J. Gratch. Social Causality and Responsibility: Modeling and Evaluation. Proceedings of the Fifth International Conference on Intelligent Virtual Agents (IVA'05), pp.191-204. Springer, 2005.

[92]B. Martinovski, W. Mao, J. Gratch, et al. Mitigation Theory: An Integrated Approach. Proceedings of the Twenty-Seventh Annual Conference of the Cognitive Science Society (CogSci'05), pp.1407-1412. Lawrence Erlbaum Associates, 2005.
[93] W. Mao and J. Gratch. Social Judgment in Multiagent Interactions. Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS'04), pp.210-217. IEEE Press, 2004.
[94]W. Mao and J. Gratch. A Utility-Based Approach to Intention Recognition. AAMAS 2004 Workshop on Agent Tracking: Modeling Other Agents from Observations (MOO'04), 2004.

[95]W. Mao and J. Gratch. The Social Credit Assignment Problem. Proceedings of the Fourth International Conference on Intelligent Virtual Agents (IVA'03), pp.39-47. Springer, 2003.

[96]J. Gratch and W. Mao. Automating After Action Review: Attributing Blame or Credit in Team Training. Proceedings of the Twelfth Conference on Behavior Representation in Modeling and Simulation (BRIMS'03), pp.339-348, 2003.

[97]R. Lu and W. Mao. Automatic Generation of ITS from English Text. Proceedings of the Sixth International Conference on Computers in Education (ICCE'98), pp.319-324. Springer, 1998.





























教学情况
1994-1999学年,中国科学院研究生院计算机学部,“人工智能原理”课程(主讲教师)
2016-2017学年,中国科学院大学计算机与控制学院,“人工智能理论与实践”课程(主讲教师之一)
2018-2019学年,中国科学院大学人工智能学院,“社会智能”课程(首席教授)


指导学生











博士研究生:

李晓晨(07硕博-12,合作导师;阿里巴巴)

葛安生(08硕博-13,合作导师;百度/腾讯)

苏鹏(08普博-11,合作导师;大理学院,副教授)
孔庆超(11硕博-16,中科院自动化所,副研)
张育浩(12硕博-17,京东)
林俊杰(13硕博-18,腾讯)

陈观淡(14硕博-19,阿里达摩院)

徐楠(15直博,在读)
韦鹏辉(16硕博,在读)
王帅(17直博,在读)
肖星琳(18普博,在读)
赵嘉豪(19直博,在读)
张睿珂(20直博)

硕士研究生:
王永庆(08硕-11,中科院计算所)
李悦群(09硕-12,百度/阿里巴巴)
皇甫璐雯(10硕-13,San Diego State Univ., Asst. Prof.)
崔宸熙(14硕-17,FreeWheel)
孔祥飞(15硕-18,滴滴出行)
曾志雄(18硕,在读)
孙颖(19硕,在读)
汤伟(20硕)















相关话题/中国科学院大学 师资

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 中国科学院大学研究生导师教师师资介绍简介-毛伟军
    基本信息毛伟军男硕导中国科学院南京天文光学技术研究所电子邮件:wjmao@niaot.ac.cn通信地址:南京市板仓街188号邮政编码:210042研究领域招生信息招生专业070401-天体物理080300-光学工程招生方向天文仪器天文光学教育背景学历学位工作经历工作简历社会兼职教授课程专利与奖励奖励信息专利成果出版信息发表论文发表著作科研活动科研项目参与会议合作情况项目协作单位指导学生 ...
    本站小编 Free考研考试 2020-04-28
  • 中国科学院大学研究生导师教师师资介绍简介-毛伟建
    基本信息毛伟建男博导中国科学院测量与地球物理研究所电子邮件:wjmao@asch.whigg.ac.cn通信地址:武汉市徐东大街340号中科院测量与地球物理研究所邮政编码:430077研究领域瞄准计算与勘探地球物理学的国际前沿和国家对油气资源勘探的重大需求开展基础理论和应用基础研究。重点放在复杂地质构造条件下的高精度高分辨地震成像和数据处理新方法。在研课题:海底四分量地震数据弹性波成像技术研究超深 ...
    本站小编 Free考研考试 2020-04-28
  • 中国科学院大学研究生导师教师师资介绍简介-毛天露
    基本信息毛天露女硕导计算技术研究所电子邮件:ltm@ict.ac.cn通信地址:北京2704信箱前瞻研究实验室邮政编码:100190研究领域虚拟现实与智能人机交互。近年来研究兴趣集中在群体行为建模与仿真、交通现象建模与仿真、角色与服装动画,及其在公共安全、动画娱乐等领域的应用。招生信息希望你是有责任心、动手能力强、喜欢思考、逻辑性强趣的学生。如果有意向报考,欢迎提前联系。课题组面向大三学生提供实习 ...
    本站小编 Free考研考试 2020-04-28
  • 中国科学院大学研究生导师教师师资介绍简介-毛士鹏
    基本信息毛士鹏男教授/研究员博导电子邮件:maosp@lsec.cc.ac.cn通信地址:中关村东路55号中科院科学与工程计算国家重点实验室306邮政编码:研究领域有限元方法及其应用,自适应方法,计算流体力学和磁流体力学招生信息招收有志于从事科研的硕士(硕博连读生)或者博士生,专业计算数学,研究方向为磁流体和铁磁流体计算。招生专业070102-计算数学招生方向有限元方法,计算流体和磁流体力学工作经 ...
    本站小编 Free考研考试 2020-04-28
  • 中国科学院大学研究生导师教师师资介绍简介-毛淑德
    基本信息 本站小编 Free考研考试 2020-04-28
  • 中国科学院大学研究生导师教师师资介绍简介-毛瑞士
    基本信息毛瑞士男博导中国科学院近代物理研究所电子邮件:maorsh@impcas.ac.cn通信地址:兰州市南昌路509号邮政编码:730000研究领域主要从事重离子加速器束流诊断技术研究,负责的工作方向为兰州重离子加速器(HIRFL)束流诊断运行及技术发展研究、新装置束诊系统建设。包括重离子治癌相关束流测量、终端探测器系统,以及束诊探测器前端控制等。在国家九五重大科学工程兰州重离子加速器冷却储存 ...
    本站小编 Free考研考试 2020-04-28
  • 中国科学院大学研究生导师教师师资介绍简介-毛锐
    基本信息毛锐女硕导中国科学院信息工程研究所电子邮件:maorui@iie.ac.cn通信地址:北京市海淀区杏石口路80号益园C1楼邮政编码:部门/实验室:第四研究室研究领域招生信息招生专业083900-网络空间安全招生方向网络科技安全教育背景2005-09--2008-07北京工业大学硕士研究生学历学位工作经历工作简历2017-11~2018-06,中国科学院信息工程研究所,高级工程师2012-0 ...
    本站小编 Free考研考试 2020-04-28
  • 中国科学院大学研究生导师教师师资介绍简介-毛淼华
    基本信息毛淼华男硕导中国科学院烟台海岸带研究所电子邮件:mhmao@yic.ac.cn通信地址:山东省烟台市莱山区春晖路17号邮政编码:研究领域招生信息招生专业083001-环境科学招生方向波流相互作用,近岸水动力学教育背景2016-01--2018-12马里兰大学东海岸分校博士2013-01--2015-12马里兰大学东海岸分校硕士2006-09--2010-07浙江大学本科学历学位工作经历工作 ...
    本站小编 Free考研考试 2020-04-28
  • 中国科学院大学研究生导师教师师资介绍简介-毛兰群
    基本信息毛兰群男博导中国科学院化学研究所电子邮件:lqmao@iccas.ac.cn通信地址:北京海淀中关村北一街2号邮政编码:100190研究领域1.电化学和(生物)电分析化学2.活体微透析及脑神经电分析化学3.生物燃料电池教育背景学历学位1998年华东师范大学获理学博士学位出国学习工作工作经历工作简历1998年9月-2000年4月,日本BAS公司科研开发部职员2000年5月-2002年11月, ...
    本站小编 Free考研考试 2020-04-28
  • 中国科学院大学研究生导师教师师资介绍简介-毛礼米
    基本信息毛礼米男硕导中国科学院南京地质古生物研究所电子邮件:lmmao@nigpas.ac.cn通信地址:南京市北京东路39号邮政编码:210008研究领域研究领域:新生代植被、气候与环境变化;孢粉形态学;古生态学主要研究兴趣与方向:1.花粉形态多样性—从晚新生代化石花粉到现生花粉;2.关键类群的花粉形态及其系统学意义、优势类群的花粉形态特征及其古生态学意义(比如热带海岸带的红树科、海桑科,亚热带 ...
    本站小编 Free考研考试 2020-04-28