删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中国科学院大学研究生导师简介-刘景月

中国科学院大学 免费考研网/2016-05-09

1、招生信息2、教育背景3、工作经历4、教授课程5、专利与奖励6、出版信息7、科研活动8、合作情况9、指导学生
基本信息
刘景月 男博导 大连化学物理研究所
电子邮件:jingyueliu@dicp.ac.cn
联系电话:**
手机号码:
通信地址:大连市中山路457号,生物楼302
邮政编码:116023


研究领域Research Interests
Nanoscience refers to the ability to manipulate individual atoms and molecules, making it possible to build machines on the scale of human cells or create materials and structures from the bottom up with novel properties. Nanoscience could change the way almost everything is designed and made, from automobile tires to vaccines to objects not yet imagined (from National Science Foundation website).
Our research focuses on nanoscience, specifically on two platforms: 1) nanoparticles/nanoparticle systems and 2) advanced nanocharacterization techniques. Nanoparticles are very broadly defined: metal/alloy clusters, semiconductor quantum dots, oxide nanocrystals as well as proteins, viruses and other nanoscale components of biological and non-biological systems. Nanoparticle systems include catalysts, displays, solar panels, chemical and biological sensors, drug/gene delivery vehicles, imaging agents, etc. Advanced nanocharacterization techniques here refer to electron microscopy, X-ray scattering/diffraction as well as a variety of spectroscopy techniques for characterization of nanoscale materials and devices. We highlight below some of the recent research programs.
Nanostructured Catalysts: Breakthroughs in developing nanostructured catalysts can reduce the use of raw materials, eliminate toxic/waste byproducts, lower the energy consumption of industrial processes, provide alternative energy resources and clean the environment. We synthesize and study model as well as practical catalysts to understand their atomic structures and their structural evolution during catalytic reactions. Catalysis involves molecules interacting with solid surfaces on an atomic or nanometer scale; atomic level characterization is critical to understanding the nature of nanostructured catalysts and their catalytic processes. The insights, gained via nanocharacterization, into the nature of active sites and the synthesis parameters leading to the formation of these active sites not only provide information on the fundamental understanding of nanocatalysis and nanocatalysts but also help develop industrial catalysts with significant impact on economy and environment. Determining the active sites of a catalyst and elucidating the related reaction mechanisms remain to be an intellectual challenge. Our goal is to develop and utilize the most advanced surface and nanoscale characterization techniques and innovative testing protocols to understand the synthesis-structure-performance relationships of nanostructured catalysts.
Nanostructures for Chemical and Biological Sensing: Because of their high surface area, unique physicochemical properties, and controllability of size and shape, nanostructures are ideal components for developing chemical or biological sensors with significantly improved sensitivity and selectivity. The fact that nanostructures are similar in size to common biomolecules also makes them suitable for intracellular tagging or as imaging contrast agents. Functionalization/modification of nanostructures by chemical linkers makes them biocompatible and significantly expands their versatility. We synthesize nanostructures, functionalize them, and develop integrated devices for detection of toxic gases, pathogens, bio-hazards, biomarkers for disease diagnostics, etc. Our goal is to control the nanostructures and their architectures at the nanoscale dimensions in order to tailor their functions to meet the needs of specific sensing applications.
Nanostructures for Energy Applications: Nanostructured materials and systems are considered to be able to address the challenges in energy and natural resources. In particular, nanoarchitectures demonstrate promising properties for improved energy harvesting, conversion, and storage. Our group synthesizes and studies various kinds of nanostructures for applications in hydrogen production, fuel cells, photovoltaics, batteries, capacitors, and other energy systems. A fundamental challenge is to understand the electron capture and transfer processes and how the atomic structures affect these processes. Our goal is to develop novel nanostructures and integrated nanoarchitectures to significantly improve the efficiency of energy production and storage systems.
Advanced Electron Microscopy Techniques: The focus of this research is to develop quantitative high-resolution imaging, diffraction and spectroscopy techniques to determine the atomic structure of nanometer-sized clusters, surfaces, and interfaces. In situ experiments and integrative approach are critical to understanding the surface structure and chemistry of nanoclusters, nanoparticles, and other nanoscale systems. The goal of this research is to develop quantitative and statistically meaningful nanostructure characterization technologies, which is one of the grand challenges in nanoscience and nanotechnology research.

招生信息

招生专业070304-物理化学
-
-
070304-物理化学
-
-
招生方向高级电镜技术,纳米催化材料
应用于纳米催化,能源,传感和纳米医学的新型纳米结构
高级电子显微镜技术的发展和应用
纳米界面物理和化学,纳米科学
教育背景

学历研究生
学位博士

工作经历

工作简历1990-1992年,美国亚利桑那州立大学固态科学中心,博士后
1992-1994年,美国亚利桑那州立大学固态科学中心,研究科学家
1994-2003年,美国孟山都公司,课题组长
2003-2006年,美国孟山都公司,高级研究员、研发经理
2006-2010年,美国密苏里大学圣路易斯分校,纳米科学中心主任、教授
2009年8月至今,大连化学物理研究所,研究员、“****”入选者

社会兼职American Chemical Society, Microscopy Society of America, American Physical Society, Materials Research Society, North American Catalysis Society, Organic Reactions Catalysis Society. Executive Committee member and Member-At-Large of the Prairie Section of the American Physical Society.
教授课程Advanced Scanning Electron Microscopy
Introduction to Transmission Electron Microscopy
Scanning Transmission Electron Microscopy

专利与奖励

奖励信息曾获得美国孟山都集团公司Above and Beyond Award(2001年、2005年)、Monsanto Edgar M Queeny Award(2002年,集团杰出科学家的最高奖励)等;在高分辨率电子显微学理论发展和技术应用发展方面作出突出贡献,曾先后获得国际电子显微大会青年科学家奖(1994年)和国际电子显微大会主席奖(1990年)。

专利成果
出版信息

发表论文Shaji, S A Arato, J J O'Brien, J Liu, G Alan Castillo, M I Mendivil Palma, T K Das Roy and B KrishnanChemically deposited Sb2S3 thin films for optical recording, J. Phys. D: Appl. Phys. , Vol. 43, 2010, pp. 075404 (7pp), 2010.
Lim, Byungkwon Hirokazu Kobayashi, Pedro H. C. Camargo, Lawrence F. Allard, Jingyue Liu and Younan XiaNew Insights into the Growth Mechanism and Surface Structure of Palladium Nanocrystals, Nano research, 2010, pp. DOI 10.1007/s12274-0, 2010.
Allard, Lawrence F. Wilbur C. Bigelow, Steven A. Bradley and Jingyue(Jimmy) Liu. A Novel Heating Technology for Ultra-High Resolution Imaging in Electron Microscopes. , Microscopy Today, Vol. 17, 2009, pp. 50-55, 2009.
Li, Peng Jingyue Liu, Peter CrozierIn situ preparation of Ni–Cu/TiO2 bimetallic catalysts, Journal of Catalysis , Vol. 262, 2009, pp. 73-82, 2009.
Arato. A E. Cárdenas, S. Shaji, J.J. O'Brien, J. Liu, G. Alan Castillo, T.K. Das Roy and B. KrishnanSb2S3:CCdS p-n junction by laser irradiation, Thin Solid Films , Vol. 517, 2009, pp. 2493-2496 , 2008.
Shulga, Olga V Kenise Jefferson, Abdul R Khan, Valerian T D'Souza, Jingyue Liu, Alexei V. Demchenko, Keith J. StinePreparation and Characterization of Porous Gold and Its Application as a Platform for Immobilization of Acetylcholinene Esterase, Chemistry of Materials , Vol. 19, 2007, pp. pp3902-3911, 2007.
“Dynamic nucleation and growth of Ni nanoparticles on high-surface area titania”, P. Li, J. Liu, N. Nag and P. A. Crozier, Surface Science 600, pp693-702 (2006)
“Nanoscale Study of the Ru-Promoted Co/Al2O3 Catalysts by in situ STEM and ETEM”, P. Li, J. Liu, N. Nag and P. A. Crozier, Applied Catalysis A: General 307, pp212-221 (2006)
“Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems”, Jingyue Liu, Journal of Electron Microscopy 54, pp251-278 (2005)
“High spatial resolution studies of surfaces and small particles using electron beam techniques”, John Venables and Jingyue Liu, Journal of Electron Spectroscopy and Related Phenomena 143, pp205-218 (2005)
“Study of the interfacial structure of a Pt/? -Al2O3 model catalyst under high-temperature hydrogen reduction”, Xiaoyan Zhong, Jing Zhu and Jingyue Liu, Journal of Catalysis 236, pp9-13 (2005)
“Atomic scale study on in-situ synthesis: Ni/TiO2 system”, Peng Li, Jingyue Liu, Nabin Nag and Peter. A. Crozier, Journal of Physical Chemistry B 109, pp13883-13890 (2005)
“Cell cycle specific isopentenyl transferase expression led to coordinated enhancement of cell division, cell growth and plant development in transgenic Arabidopsis”, Steve S. He, Angel Hoelscher, Jingyue Liu, Dennis O’Neill, Jeanne Layton, Robert McCarroll and Stanton Dotson, Plant Biotechnology 22, pp 261-270 (2005)
“Arabidopsis E2Fa plays a bimodal role in regulating cell division and cell growth”, Steve He, Jimmy Liu, Zhidong Xie, Dennis O’Neill and Stanton Dotson, Plant Molecular Biology 56, pp171-184 (2004).
“Advanced electron microscopy characterization of nanostructured heterogeneous catalysts”, Jingyue Liu, Journal of Microscopy and Microanalysis 10, pp55-76 (2004).
“Lattice measurement and alloy compositions in metal and bimetallic nanoparticles”, Tsen, S.-C. Y., Crozier, P. A. & Liu, J. Ultramicroscopy 98, pp63-72 (2003)
“Low-Voltage and Ultra-Low-Voltage Scanning Electron Microscopy of Semiconductor Surfaces and Devices”, Jingyue Liu, International Journal of Modern Physics B16, pp4387-4394 (2003)
“Direct observation of metal-oxide interactions in nanoscale systems”, Klie, Robert F.; Sun, Kai; Disko, Mark M.; Liu, J.; Browning, N. D, Proceedings of SPIE-The International Society for Optical Engineering 4807 (Physical Chemistry of Interfaces and Nanomaterials), pp59-70 (2002)
“Studying the Metal-Support Interaction in Pd/?-Al2O3 Catalysts by Atomic-Resolution Electron Energy-Loss Spectroscopy”, Sun, K.; Liu, J.; Nag, N.; Browning, N. D, Catalysis Letters 84, pp193-199 (2002)
“Atomic Scale Characterization of Supported Pd-Cu/?-Al2O3 Bimetallic Catalysts”, Sun, K.; Liu, J.; Nag, N. K.; Browning, N. D., Journal of Physical Chemistry B 106, pp12239-12246 (2002)
“Direct atomic scale analysis of the distribution of Cu valence states in Cu/?-Al2O3 catalysts”, Sun, Kai; Liu, Jingyue; Browning, Nigel D., Applied Catalysis, B: Environmental 38, pp271-281 (2002)
“Correlated Atomic Resolution Microscopy and Spectroscopy Studies of Sn(Sb)O2 Nanophase Catalysts”, Sun, K.; Liu, J.; Browning, N. D., Journal of Catalysis 205, pp266-277 (2002)
“Contrast of Highly Dispersed Metal Nanoparticles in High-Resolution Secondary Electron and Backscattered Electron Images of Supported Metal Catalysts”, J. Liu, J. Microscopy and Microanalysis 6, pp388-399 (2000)
“Nanostructured Metal Oxides for Printed Electrochromic Dispalys”, J. Liu and J. P. Coleman, J. Materials Science & Engineering –structural Materials Properties, Microstructure and Processing 286, pp144-148 (2000)


发表著作7 “Widening the Impact: Informal, Introductory, and Industry Nanochallenges”, P. Fraundorf and Jingyue Liu, Book Chapter in Nanoscale Science and Engineering Education, edited by Aldrin E. Sweeney and Sudipta Seal. (Publisher: American Scientific Publishers, 2008).
6 “Advanced Electron Microscopy in Developing Nanostructured Heterogeneous Catalysts”, Jingyue Liu, Book Chapter in Nanotechnology in Catalysis, edited by B Zhou, S. Hermans and G. A. Somorjai. (Publisher: Kluwer Academic/Plenum Publishers, 2005).
5 “High Resolution Scanning Electron Microscopy”, Jingyue Liu, Book Chapter in Microscopy for Nanotechnology, edited by N Yao and Z. L. Wang. (Publisher: Kluwer Academic/Plenum Publishers, 2005).
4 “Nanophase metal oxide materials for electrochromic displays”, Jingyue Liu and J. P. Coleman, book chapter in: Handbook of Nanophase and Nanostructured Materials: Synthesis / Characterization / Materials Systems and Applications I / Materials Systems and Applications II, edited by Zhong Lin Wang, Yi Liu, and Ze Zhang (Publisher: Kluwer Academic/Plenum Publishers, 2003).
3 “Scanning electron and Auger microscopy of surfaces and small particles”, J. A. Venables and Jingyue Liu, chapter in: “Encyclopedia of Surface and Colloid Science”, edited by Arthur T. Hubbard (Publisher: Marcel Dekker, Inc., New York, 2002)
2 “Atomic-scale characterization of metal-support interactions in supported metal catalysts”, K, Sun, J. Liu, N. K. Nag, and N. D. Browning, book chapter in: Recent Developments in Materials Science, (Publisher: Research Signpost, 2003)
1 “Atomic scale studies of heterogeneous catalysts”, R. F. Klie, K. Sun, M. M. Disko, J. Liu, and N. D. Browning, book chapter in: Dekker Encyclopedia of Nanoscience and Nanotechnology, (Publisher: Marcel Dekker, 2004)

科研活动

科研项目Novel Complexes for Platinum-Based Bimetallic Catalysts for Fuel Cell Applications,DOE, $1,500,000 ,主持
establishing a St. Louis Institute of Nanomedicine, Missouri Life Science Fund ,$4,500,000 ,共同主持
acquisition of a confocal laser scanning microscope ,Missouri Life Science Fund, 2008-2009 ,$281,745, 共同主持
Acquisition of an X-ray Diffraction/Small Angle X-ray Scattering Instrument to Enhance Nanoscience Research at the University of Missouri-St. Louis ,University of Missouri Research Board, 2008.8- 2009.7, $124,500 ,主持
synthesis of nanostructured metal oxides ,University of Missouri Research Board ,2007.8- 2008.7 ,$18,000, 主持
Correlated atomic scale STEM and X-ray synchrotron methods for understanding structure-property relationships of supported nanocluster catalysts, NSF ,2005-2008 ,$225, 999 ,主持
In Situ Nanocharacterization of the Synthesis and Early Evolution of Supported Metallic and Bimetallic Nanoparticles for Catalytic Applications ,NSF, 2006-2009, $329,997, 主持
高分辨电镜中心项目,大连化物所&洁净能源国家实验室,7000万元


参与会议
合作情况

项目协作单位
指导学生

相关话题/纳米 奖励 科学 电子 技术

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 北京大学环境科学与工程学院2016年硕士研究生招生复试通知
    一、复试学生名单与复试时间地点 复试学生名单: 考生编号 姓名 报考专业 报考方向 总分 ...
    本站小编 免费考研网 2016-05-10
  • 2016年环境科学与工程学院博士研究生招生复试通知
    学院招生小组根据《环境科学与工程学院2016年博士生申请审核招生细则》规定严格审核材料,按照不超过招生人数300%的比例择优筛选出进入考核的考生。现公布复试安排及面试名单。 考生必须保证提交的全部申请材料的真实性和准确性,凡不符合报考条件的考生将不予录取,相关后果由考生本人承担。如果考生需要补充材料供 ...
    本站小编 免费考研网 2016-05-10
  • 2016年环境科学与工程学院硕士应试考生初取名单公示
    环境科学与工程学院本次统考生的招生指标为6人,共计8位统考生2位港澳台学生参加我院的面试,经过专家小组面试后决定,在参加面试的10人中,本院共招收统考硕士生6人港澳台学生2人,具体名单附后。现对复试成绩及初取名单进行公示,时间为自2016年3月31日起10个工作日,如有异议请联系:yingjang@pku.edu.cn, 62751929。复试 ...
    本站小编 免费考研网 2016-05-10
  • 北京大学2016年环境科学与工程学院博士申请-考核制初取名单公示
    环境科学与工程学院2016年招收申请考核制博士生指标为9人,有14位考生进入复试,经过面试决定招收申请考核制博士生9人,具体名单附后。 另有六位硕转博生通过考核分别为:徐文杰、庞韵梦、郑云昊、柴立伟、杨裕茵、代天娇。 现对初取结果进行公示,公示期为自2016年4月15日起10个工作日,如有异议请联系:yin ...
    本站小编 免费考研网 2016-05-10
  • 2016年北京大学环境科学与工程学院优秀大学生夏令营通知
    北京大学环境科学与工程学院定于2016年7月3-6日开办环境科学与工程学科优秀大学生夏令营,在全国范围内招收对环境科学与工程感兴趣的优秀本科生到北京大学进行集中交流,增强科研兴趣,拓展学术视野,明确研究方向。主要活动有知名专家学术讲座、与教授零距离交流、参观实验室等活动。 一、夏令营招生对象和人数 (1)全国 ...
    本站小编 免费考研网 2016-05-10
  • 北京大学软件与微电子学院2016年工程管理硕士(MEM)专业学位研究生招生简章
    北京大学软件与微电子学院工程管理硕士(MEM)专业学位,以培养信息、工程、管理、金融等多维交叉型人才为目标,运用国际先进的培养理念与培养方 法,全力整合校内外优质教育资源,打造并分享学习、研究、实践、交流的综合平台,培养具有丰富信息化知识和娴熟工程管理技能,善于思考、长于创新、富有团 队精神的互联网金融和 ...
    本站小编 免费考研网 2016-05-10
  • 北京大学软件与微电子学院2016年软件工程硕士专业学位研究生招生简章
    北京大学软件与微电子学院是经教育部、国家计委批准成立的国家示范性软件学院,也是教育部、发改委和科技部等六部委批准建设的国家示范性微电子学 院。学院设有电子与信息领域工程博士点,工程管理硕士点,软件工程、集成电路工程、项目管理、工业设计、电子与通信工程、计算机技术等6个领 ...
    本站小编 免费考研网 2016-05-10
  • 北京大学软件与微电子学院2016年计算机技术硕士专业学位研究生招生简章
    北京大学软件与微电子学院是经教育部、国家计委批准成立的国家示范性软件学院,也是教育部、发改委和科技部等六部委批准建设的国家示范性微电子学 院。学院设有电子与信息领域工程博士点,工程管理硕士点,软件工程、集成电路工程、项目管理、工业设计、电子与通信工程、计算机技术等6个领域的 ...
    本站小编 免费考研网 2016-05-10
  • 北京大学软件与微电子学院2016年集成电路工程硕士专业学位研究生招生简章
    北京大学软件与微电子学院是经教育部、国家计委批准成立的国家示范性软件学院,也是教育部、发改委和科技部等六部委批准建设的国家示范性微电子学 院。学院设有电子与信息领域工程博士点,工程管理硕士点,软件工程、集成电路工程、项目管理、工业设计、电子与通信工程、计算机技术等6个领域的 ...
    本站小编 免费考研网 2016-05-10
  • 北京大学软件与微电子学院2016年电子与通信工程硕士专业学位研究生招生简章
    北京大学软件与微电子学院是经教育部、国家计委批准成立的国家示范性软件学院,也是教育部、发改委和科技部等六部委批准建设的国家示范性微电子学 院。学院设有电子与信息领域工程博士点,工程管理硕士点,软件工程、集成电路工程、项目管理、工业设计、电子与通信工程、计算机技术等6个领 ...
    本站小编 免费考研网 2016-05-10