- 经玲导师简介 -
基本信息
目前指导研究生
在籍
- 博士研究生3人 (其中 2013级:1 2014级:1 2015级:1) 硕士研究生2人 (其中 2014级:1 2015级:1)
不在籍
- 博士研究生6人 (其中 2008级:1 2009级:2 2010级:1 2011级:1 2012级:1) 硕士研究生10人 (其中 2005级:2 2006级:1 2007级:2 2009级:1 2010级:1 2011级:1 2012级:1 2013级:1)
个人简历
1997年北京航空航天大学博士研究生毕业。1997.7—1999.6在中国地质大学作两年博士后研究工作,1999年7月至今在中国农业大学任教,1999.8晋升副教授。2006年1月晋升教授。2002年遴选为硕士研究生导师,2007年遴选为博士研究生导师。
遴选学科专业
不公开
论文与专著
近期主要科研论文:
1. (通讯作者)(EI: **733)Qiang Jingjing, Yang Bing, Li Qian, Jing Ling. Privacy-preserving SVM of horizontally partitioned data for linear classification. In Proceedings - 4th International Congress on Image and Signal Processing, CISP 2011, v 5, p 2771-2775, 2011, Proceedings - 4th International Congress on Image and Signal Processing, CISP 2011
2. 甄苓,经玲,林海波. 两个泛函优化定理的证明. 数学的实践与认识,2011, Vol.41, No.19:241-244 (核心期刊)
3. (SCI,影响因子1.848)Yu-Xin Li, Yuan-Hai Shao and Ling Jing and Nai-Yang Deng. An Efficient Support Vector Machine Approach for Identifying Protein SNitrosylation Sites. Protein & Peptide Letters, 2011, 18, 573-587 (第3作者)
4. (SCI,影响因子0.5630)Qian Li, Bing Yang, Naiyang Deng, Ling Jing. Constructing Support Vector Machine Ensemble with Segmentation for Imbalanced Datasets. Neural Computing and Applications. (通讯作者)
5. (SCI)Yuan-Hai Shao,Chun-Hua Zhang,Zhi-Min Yang,Ling Jing,Nai-Yang Deng. An e-twin support vector machine for regression. Neural Computing and Applications, DOI 10.1007/s00521-012-0924-3
6. (EI, )Ting Ke, Bing Yang, Ling Zhen, Junyan Tan, Yi Li, Ling Jing. Building High-Performance Classifiers Using Positive and Unlabeled Examples for Text Classification. In Proceedings of the Ninth International Symposium on Neural Networks, 2012, Part II, LNCS 7368, pp. 187–195. (通讯作者)
7. (EI, ISTP)Bing Yang, Junyan Tan, Naiyang Deng, Ling Jing. Network Kernel SVM for Microarray Classification and Gene Sets Selection. In proceedings of 2012 IEEE 6th International Conference on Systems Biology (ISB), Xi’an, China, August 18–20, 2012(通讯作者)
8. (EI, ISTP) Changhe Fu, Ling Jing, Su Deng, Guangxu Jin. Identification of Oncogenic Genes for Colon Adenocarcinoma from Genomics Data. In proceedings of 2012 IEEE 6th International Conference on Systems Biology (ISB), Xi’an, China, August 18–20, 2012(通讯作者)
9. (EI)Jingjing Qiang, Ting Ke, Bing Yang, Ling Jing. Building SVM Classifier Based on Posterior Probability Using Positive and Unlabeled Examples. International Journal of Digital Content Technology and its Applications. (通讯作者)
10. (EI) Bing Yang, Junyan Tan, Ling Zhen, Ling Jing. Network-based Gene Sets Selection via Network Regularization. Journal of Convergence Information Technology (通讯作者)
11. 检索) Ting-Ting Gao, Zhi-Xia Yang, Yong Wang, Ling Jing. Identifying translation initiation sites in prokaryotes using support vector machine. Journal of Theoretical Biology, 2010, 262: 644-649 (通讯作者)(SCI
12. (ISTP)Bing Yang, Qian Li, Ling Jing, Ling Zhen. Multiple Instance Learning via Multiple Kernel Learning. In proceedings of the Ninth International Symposium on Operations Research and Its Applications (ISORA’10),2010, pp. 160–167
13. (通讯作者)Ting-Ting Gao, Zhi-Xia Yang, Ling Jing. On Universum-Support Vector Machines. In proceedings of The Eighth International Symposium on Operations Research and Its Applications (ISORA’09), 2009, p.473–480
14. Hui Ning, Bing Yang, Jun Cui, Ling Jing. Detection of Horizontal Gene Transfer in Bacterial Genomes. In proceedings of The Third International Symposium on Optimization and Systems Biology (OSB’09) 2009, p.229–236 (通讯作者)
15. (SCI/EI) Xiaoqin Hu, Zhixia Yang , Ling Jing. An incremental dimensionality reduction method on discriminant information for pattern classification. Pattern Recognition Letters,2009, 30: 1416-1423 (通讯作者)
16. (SCI检索,影响因子2.574) Xiaojian Shao , Yingjie Tian , Lingyun Wu , Yong Wang , Ling Jing , Naiyang Deng. Predicting DNA- and RNA-binding proteins from sequences with kernel methods. Journal of Theoretical Biology, 2009,258: 289–293
17. (ISTP)Xiaoqin Hu, Ling Jing, Qian Li . A Discriminate Multidimensional Mapping for Small Sample Database.. In the proceedings of the first International Symposium, OSB’07,Beijing , China, August 8-10, 2007. Lecture Notes in Operation Research 7(2007):Optimization and System Biology. P.250-258 (通讯作者)
18. (SCI/EI检索, Accession number: **)Zhixia Yang,Ling Jing. Support vector machine solving freedorm curve and surface reconstruction problem. International Journal of Wavelets, Multiresolution and Information Processing, Vol. 5, No. 1 (2007) 159-172 (通讯作者)
19. (SCI/EI检索)Li Sun, Ling Jing, and Xiaodong Xia, A New Proximal Support Vector Machine for Semi-supervised Classification. Lecture Notes in Computer Science, 2006,v3971, p 1076-1082 (通讯作者)
20. (核心期刊)经玲. 用LS-SVMs整体构造B样条曲线. 计算机工程与应用, 2006.No.4, p.7-9 (第一作者)
21. Ling Jing, and Ling Zhen. B-SPLINE CURVE SMOOTHING FITTING BASED ON MINIMIZATION STRUCTRAL RISK. In Proceedings of the International Conference on Advanced Design and Manufacture(ADM2006), January, 8th -10th 2006, Harbin, China. (第一作者)
22. (EI检索)Ling Jing. A Robust Proximal Support Vector Machines for Classification. In proceedings of the second International Conference on Neural Networks and Brain (ICNN&B''2005), October 13-15, 2005, Beijing, China, p 576-580(第一作者)
23. (EI检索:**)Ling Jing, and Li Sun. Fitting B-spline Curves by Least Squares Support Vector Machines. In proceedings of the second International Conference on Neural Networks and Brain (ICNN&B''2005), October 13-15, 2005, Beijing, China, p 905-909 (第一作者)
24. (EI: **533, ISTP收录)Ling Jing, Li Sun. Semi-Supervised Support Vector Machines for Data Classification with Uncertainty,In proceedingd of the eighth International Conference on Electrical Machines and Systems , 2005, p 2278-2281(第一作者)
25. (ISTP检索)Ling Jing,Ling Zhen,Reconstruction of Freeform Surface by Support Vector Regression. In proceedings of the Second IFIP Conference on Artificial Intelligence Applications and Innovations, Beijing, China, September 7-9,2005(第一作者)
26. Zhixia Yang, Ling Jing,Solving surface fitting by smoothing least squares support vector machines,In proceedings of the 8 th International Conference for Young Computer Scientists ,2005.(通讯作者)
27. Zhixia Yang, Ling Jing. Support Vector Regression Solving Freeform Surface Problem,In proceedings of the International Conference on Intelligent Computing, 2005(通讯作者)
28. (SCI, EI: **47)Zhixia Yang, Nong Wang, Ling Jing. Support vector regression with smoothing property. Lecture Notes in Computer Science, v 3610,2005, p 217-220(通讯作者)
29. 核心期刊) 经玲,孙立. 基于支持向量回归的供应链合作伙伴核心竞争力评价, 微电子学与计算机,2005, 22(8): 124-126 (第一作者)
30. (核心期刊) 经玲,王弄. 支持向量回归模型在曲线光顺拟合中的改进. 计算机工程与应用,2005(10),66-68(第一作者)
教材:
[1] 概率论与数理统计学习指导,参编,科学技书文献出版社,2003,9
[2] 线性代数学习指导,参编,机械工业出版社,2005,8
[3] 概率论与数理统计学习指导,主编,第二版,科学技术文献出版社,2006,9
近五年承担的主要项目
国家自然科学基金项目《核矩阵学习的最优化方法及其在生物信息学中的应用》,2011-2013,主持
国家自然科学基金项目《多示例多标记学习中的最优化方法及其应用》,2010-2012,主要参加
国家自然科学基金重点项目(**):生物信息学与最优化方法,2007-2010,主要参加
国家自然科学基金项目《数据挖掘中的最优化方法》,2004-2006,主要参加
中国农业大学2009年研究生教育教学改革项目“数学专业硕士研究生创新型人才培养模式的研究”,2009.1-2009.12,主持
中国农业大学研究生教育教学改革项目“全校研究生公共课数学基础学科建设”,2007.12-2008.12,主持
中国农业大学2007年研究生招生复试改革项目“化学、数学、力学及农药学学科研究生复试改革研究”,参加
中国农业大学2006年校级教改项目:“数值分析”课程教学内容与方法改革与创新,2006.7-2007.7,主持
中国农业大学2006本科精品课程建设项目:“线性代数”, 2006.12-2008.12,参加
中国农业大学2006年研究生重点课程建设项目《数值分析》2006.12-2007.12,主持
承担的教学工作
本科生课程:线性代数、概率论与数理统计、高等数学、计算方法、数学实验
硕士研究生课程:数值分析、数学模型、数学软件、线性规划
博士研究生课程:运筹与管理专业进展、运筹与管理专业Seminar