Jingyi Wang, Long Li, Chaonan Li, Xi Yang, Yinghong Xue, Zhi Zhu, Xinguo Mao & Ruilian Jing
Plant Biotechnology Journal, 08 February 2021, IF: 8.154
https://doi.org/10.1111/pbi.13564
Abstract
Root depth, as an important component of root architecture, plays a significant role in growth, grain yield determination and abiotic stress tolerance in crop plants, but its genetic basis remains poorly elucidated. In this study, a panel composed of 323 wheat (Triticum aestivum L.) accessions was assessed for variation in root depth and genotyped with the Wheat 660K SNP Array. GWAS (genome-wide association study) detected significant association between a 125 bp miniature inverted-repeat transposable element (MITE) in the promoter of the TaVSR1-B gene with root depth at the booting stage. We showed that the MITE repressed TaVSR1-B expression by DNA methylation and H3K27 tri-methylation. The roles of TaVSR1-B in root growth were verified by altered expression of the gene in transgenic wheat, rice and a tavsr1 TILLING mutant. Increased TaVSR1-B expression made the root elongation zone shorter and the differentiation zone longer, leading to deeper root. This work provides novel insight into the genetic basis of variation in root depth and a promising target for genetic improvement of root architecture in wheat.
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)