表的存储、索引结构、聚簇结构;
关系系统分类;
查询优化概念、查询优化方法。
(五)数据库设计
数据库设计的步骤,以及每个步骤重点关心的问题;
实体联系分析,ER模型,ER模型向关系模型转换规则;
(六)关系规范化
数据库设计的冗余和异常问题;
函数依赖、多汁依赖、逻辑蕴涵、阿姆斯特朗公理;
基本依赖闭包、候选码;
无损分解,1NF、2NF、3NF、BCNF、4NF定义与算法。
(七)安全性和完整性
数据库安全性控制的基本技术:用户、角色、权限、授权;
完整性分类和完整性控制方法。
触发器的使用方法。
(八)事务管理
事务的概念、性质,事务的实现;
数据库故障、日志,数据库恢复原理和方法;
并发问题:数据不一致性;
数据锁、封锁粒度、封锁协议,
死锁检测和死锁处理;
三、试卷结构
考试题型:填空题、选择题、简答题、计算题、设计题
808力学
一、考试要求
1、要求考生系统地掌握经典力学的基本理论和基本方法,并善于应用这些理论和方法,
具有较强的分析问题与解决问题能力。
2、要求考生系统地掌握材料力学的基本概念、理论和方法,并善于应用这些理论和方
法,分析、解决工程问题,要求考生具有较强的分析与解决工程问题能力
二、考试内容
理论力学部分:
1、约束和约束力,受力分析和受力图。
2、平面汇交力系合成与平衡的几何法,力对点的矩,平面力偶、力偶系平衡条件。
3、平面任意力系的简化、平衡方程、物体系的平衡。
4、空间汇交力系、力对点及对轴的矩、空间力偶、空间力系简化、平衡方程。
5、滑动摩擦、摩擦角及自锁、考虑摩擦时物体的平衡。
6、描述点运动的矢量法、直角坐标法、自然法。
7、刚体定轴转动内各点的速度、加速度。用矢量表达的角速度、角加速度,用矢积表达的点的速度和加速度。
8、三种运动,点的速度合成定理、加速度合成定理、科氏加速度。
9、刚体平面运动中求各点速度和加速度的基点法、瞬心法、加速度的基点法、运动学的综合应用。
10、质点动力学基本定律、运动微分方程。
11、动量、动量定理、质心运动定理。
12、动量矩、动量矩定理、定轴转动微分方程、转动惯量、质点系相对质心的动量矩定理、刚体平面运动微分方程。
13、功、动能、动能定理、功率方程、势能、普遍定理的综合应用。
14、惯性力、达朗贝尔原理、惯性力系的简化、轴承动约束力。
15、虚位移、虚功、虚位移原理。
16、非惯性力系中质点动力学基本方程及动能定理。
17、碰撞问题的简化、基本定理、恢复系数、撞击中心。
18、自由度、广义坐标、广义力、动力学普遍方程。第二类拉格朗日方程及初积分。
19、单自由度系统的振动、固有频率、有阻尼的受迫振动、转子的临界转速、隔振、二个自由度系统的振动。
材料力学部分:
1、拉伸、压缩与剪切
掌握比例极限、弹性极限、屈服极限、强度极限、塑性指标—延伸率、断面收缩率、Hooke定律、possion 比;重 点理解轴向拉伸或压缩时横截面上的内力和应力,材料在拉伸、压缩时的力学性能;掌握轴向拉伸或压缩时的变形规律;掌握安全系数、许用应力和强度条件;了解 变形能、拉伸、压缩静不定问题、温度应力和装配应力、应力集中的概念;掌握剪切和挤压的实用计算。
2、扭转
外力偶矩的计算;纯剪切、切应变、切应力互等定理、剪切Hooke定律;重点掌握扭矩和扭矩图,掌握圆轴扭转时的应力、强度条件,圆轴扭转时的变形、刚度条件。
3、理解截面的几何性质(静矩和形心;惯性矩、惯性半径、惯性积;简单图形惯性矩的计算;平行移轴公式。组合图形惯性矩的计算。
4、弯曲
重点掌握剪力和弯矩;剪力方程和弯矩方程;剪力图和弯矩图;载荷集度、剪力和弯矩之间的关系极其应用。熟悉弯曲时的正应力、正应力强度条件;矩形截面梁、工字型截面梁和圆形截面梁的弯曲切应力、弯曲切应力强度条件;提高弯曲强度的措施。
掌握梁的挠度和转角、刚度条件;理解梁的挠曲线及其近似微分方程、用积分法求弯曲变形、用叠加法求弯曲变形。
5、应力和应变分析、强度理论
理解应力状态的概念、主应力、主平面,掌握二向应力状态分析(解析法和应力圆法);理解三向应力圆、最大切应力;掌握平 面应力状态下应变分析;理解广义Hooke定律、体积应变、体积弹性模量、三向应力状态下的弹性比能、体积改变比能、形状改变比能;重点掌握四种古典强度 理论。
6、掌握斜弯曲、组合变形时的应力和强度计算;重点掌握拉伸或压缩与弯曲组合时的应力和强度计算;扭转和弯曲组合时的应力和强度计算。