刘 军
见习教授
电话:
E-mail:lj@163.com or liujun@mail.buct.edu.cn
研究领域:
高分子基纳米复合材料基因组计划:高通量计算机模拟、高通量实验与数据库
高导电与高导热高分子纳米复合材料的设计、结构与性能研究
智能高分子纳米复合材料(自修复、形状记忆、自组装)的设计、结构与性能研究
高性能水凝胶与气凝胶高分子复合材料的计算机模拟与实验研究
教育背景
工作经历
科研成果
2003.9-2011.6,北京化工大学高分子材料科学与工程专业,本硕博连读
2017.1-今,见习教授
2013.7-2016.12,北京化工大学材料科学与工程学院副教授,C类人才海外引进
2011.7-2013.7,美国密西根大学化学工程专业,博士后,导师:美国工程院院士Ronald Gary Larson
发表文章80余篇,包括Advanced Functional Materials, Nano Energy, ACS Applied Materials & Interfaces, Journal of Materials Chemistry A, Macromolecules, Macromolecular Rapid Communications, Journal of Chemical Physics等国际权威期刊, 单篇最高他引100余次,他人引用总次数约800次。研究工作被美国物理协会(American Physical Society)、纳米科技网站(nanotechweb)等进行Highlight。受邀分别在Physical Chemistry Chemical Physics与Rubber Chemistry and Technology上撰写长篇综述。受邀在Express Polymer Letters上撰写Editorial Corner。同时受邀在Elsevier 出版的著作Progress in Rubber Nanocomposites 撰写英文一章。此外,相关工作被选为Nano Energy与Journal of Chemical Physics封面论文(cover paper)。获首届中国化工学会颁发的 “中国橡胶科技创新奖”与2016年北京化工大学引进人才首聘期考核优秀,并受邀在美国物理学会APS国际会议、中国化学会2018年软物质理论计算与模拟学术会议、第116期“双清论坛”等做邀请报告。
获奖2016年12月2016年北京化工大学引进人才首聘期考核优秀
2016年11月获得中国化工学会首届“中国橡胶科技创新奖”
2015年09月获第二届中国国际复合材料科技大会(CCCM-2)优秀论文奖
2010年10月获得中国石化“英才奖学金”
2010年01月获得第十六届全国复合材料学术会议优秀论文奖
2009年06月获得北京化工大学“十大学术之星”称号
2009年05月获得北京化工大学“优秀研究生(博士生)”称号
2008年11月获得日本住友橡胶奖学金
2008年04月获得北京化工大学“优秀研究生(硕士)”称号
在研与完成的科研项目(1) 动态周期加载下橡胶基体中填料网络结构的演化与力学性能关系的模拟与实验研究,国家自然科学基金面上项目。
(2) 弹性体纳米复合材料Payne效应机制的分子动力学模拟与理论研究,国家自然科学基金青年基金。
(3) 橡胶纳米复合材料多层次多次度网络结构表征,科技部973项目。
(4) 石墨烯-橡胶纳米复合材料的制备及结构-性能关系的分子动力学模拟研究, 北京市教育委员会共建项目建设计划北京市重点实验室建设项目。
(5) 弹性体石墨烯复合材料计算机模拟研究, 北京化工大学C类人才启动资助
(6) 弹性体双固化技术, 道达尔公司
(7) 大型橡胶输送带用自组装修复材料开发, 无锡宝通科技股份有限公司
(8) 超低生热与高抗切割轮胎及3D打印技术研究, 山东玲珑轮胎股份有限公司
(9) 合成橡胶溶聚丁苯在轮胎中的应用, 中策橡胶集团有限公司
(10) 轮胎胎面用树脂的作用机理研究, 彤程集团有限公司
发表论文[1] ShenJX,LiuJ,Li X. Effects of Cross-Link Density and Distribution on Static and Dynamic Properties of Chemically Cross-Linked Polymers [J].Macromolecules,2019,52(1):121-134.
[2] LI F, LIU F, LIU J, et al. Thermo-mechanical coupling analysis of transient temperature and rolling resistance for solid rubber tire: Numerical simulation and experimental verification[J]. Composites Science and Technology, 2018, 167: 404-410.
[3] ZHENG Z, XIA X, ZENG X, et al. Theoretical model of Time-Temperature superposition principle of the Self-Healing kinetics of supramolecular polymer nanocomposites[J]. Macromolecular Rapid Communications, 2018, 39(20, SI): **.
[4] LI F, DUAN X, ZHANG H, et al. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites with polymer-grafted nanorods[J]. Physical Chemistry Chemical Physics, 2018, 20(34): 21822-21831.
[5] ZHANG Z, HOU G, SHEN J, et al. Designing the Slide-Ring polymer network with both good mechanical and damping properties via molecular dynamics simulation[J]. Polymers, 2018, 10(9): 964.
[6] CHEN Y, XU Q, JIN Y, et al. Shear- induced parallel and transverse alignments of cylinders in thin films of diblock copolymers[J]. Soft Matter, 2018, 14(32): 6635-6647.
[7] TAO W, SHEN J, CHEN Y, et al. Strain rate and temperature dependence of the mechanical properties of polymers: A Universal time-temperature superposition principle[J]. Journal of Chemical Physics, 2018, 149(4): 44105.
[8] ZHANG X, LIU J, ZHANG Z, et al. Toughening elastomers using a Mussel-Inspired multiphase design[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23485-23489.
[9] HOU G, TAO W, LIU J, et al. Effect of the structural characteristics of solution styrene-butadiene rubber on the properties of rubber composites[J]. Journal of Applied Polymer Science, 2018, 135(24, SI): 45749.
[10] ZHENG J, HAN D, ZHAO S, et al. Constructing a multiple covalent interface and isolating a dispersed structure in Silica/Rubber nanocomposites with excellent dynamic performance[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19922-19931.
[11] CHEN Y, XU Q, JIN Y, et al. Design of End-to-End assembly of Side-Grafted nanorods in a homopolymermatrix[J]. Macromolecules, 2018, 51(11): 4143-4157.
[12] QIN X, HAN B, LU J, et al. Rational design of advanced elastomer nanocomposites towards extremely energy-saving tires based on macromolecular assembly strategy[J]. NANO Energy, 2018, 48: 180-188.
[13] SHEN J, LI X, ZHANG L, et al. Mechanical and viscoelastic properties of Polymer-Grafted nanorod composites from molecular dynamics simulation[J]. Macromolecules, 2018, 51(7): 2641-2652.
[14] WAN H, SHEN J, GAO N, et al. Tailoring the mechanical properties by molecular integration of flexible and stiff polymer networks[J]. Soft Matter, 2018, 14(12): 2379-2390.
[15] ZHANG L, WU X, WANG R, et al. Simulation and experimental studies of clay/elastomer nanocomposites[J]. Abstracts of Papers of the American Chemical Society, 2018, 255.
[16] ZHENG Z, LI F, LIU J, et al. Effects of chemically heterogeneous nanoparticles on polymer dynamics: insights from molecular dynamics simulations[J]. Soft Matter, 2018, 14(7): 1219-1226.
[17] GAO Y, HU F, WU Y, et al. Understanding the structural evolution under the oscillatory shear field to determine the viscoelastic behavior of nanorod filled polymer nanocomposites[J]. Computational Materials Science, 2018, 142: 192-199.
[18] GAO Y, MA R, ZHANG H, et al. Controlling the electrical conductive network formation in nanorod filled polymer nanocomposites by tuning nanorodstiffness[J]. RSC Advances, 2018, 8(53): 30248-30256.
[19] ZHAO X, LI T, HUANG L, et al. Uncovering the rupture mechanism of Carbon nanotube filled cis-1,4-polybutadiene via molecular dynamics simulation[J]. RSC Advances, 2018, 8(49): 27786-27795.
[20] GUO Y, LIU J, LU Y, et al. A combined molecular dynamics simulation and experimental method to study the compatibility between elastomers and resins[J]. RSC Advances, 2018, 8(26): 14401-14413.
[21] LIU J, WAN H, ZHOU H, et al. Formation mechanism of bound rubber in elastomer nanocomposites: a molecular dynamics simulation study[J]. RSC Advances, 2018, 8(23): 13008-13017.
[22] LI Z, LIU J, ZHANG Z, et al. Molecular dynamics simulation of the viscoelasticity of polymer nanocomposites under oscillatory shear: effect of interfacial chemical coupling[J]. RSC Advances, 2018, 8(15): 8141-8151.
[23] GAO Y, HU F, LIU J, et al. Molecular dynamics simulation of the glass transition temperature of fullerene filled cis-1,4-polybutadiene nanocomposites[J]. Chinese Journal of Polymer Science, 2018, 36(1): 119-128.
[24] LIU J, LIU J, WANG S, et al. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability[J]. Journal of Materials Chemistry a, 2017, 5(48): 25660-25671.
[25] HOU G, TAO W, LIU J, et al. Tailoring the dispersion of nanoparticles and the mechanical behavior of polymer nanocomposites by designing the chain architecture[J]. Physical Chemistry Chemical Physics, 2017, 19(47): 32024-32037.
[26] WANG W, ZHANG Z, DAVRIS T, et al. Simulational insights into the mechanical response of prestretched double network filled elastomers[J]. Soft Matter, 2017, 13(45): 8597-8608.
[27] ZHENG Z, HOU G, XIA X, et al. Molecular dynamics simulation study of polymer nanocomposites with controllable dispersion of spherical nanoparticles[J]. Journal of Physical Chemistry B, 2017, 121(43): 10146-10156.
[28] LIU J, WANG Z, ZHANG Z, et al. Self-Assembly of block copolymer chains to promote the dispersion of nanoparticles in polymer nanocomposites[J]. Journal of Physical Chemistry B, 2017, 121(39): 9311-9318.
[29] GUO Y, LIU J, WU Y, et al. Molecular insights into the effect of graphene packing on mechanical behaviors of graphene reinforced cis-1,4-polybutadiene polymer nanocomposites[J]. Physical Chemistry Chemical Physics, 2017, 19(33): 22417-22433.
[30] GAO Y, WU Y, LIU J, et al. Effect of chain structure on the glass transition temperature and viscoelastic property of cis-1,4-polybutadiene via molecular simulation[J]. Journal of Polymer Science Part B-POLYMER Physics, 2017, 55(13): 1005-1016.
[31] WANG W, HOU G, ZHENG Z, et al. Designing polymer nanocomposites with a semi-interpenetrating or interpenetrating network structure: toward enhanced mechanical properties[J]. Physical Chemistry Chemical Physics, 2017, 19(24): 15808-15820.
[32] QIAO H, CHAO M, HUI D, et al. Enhanced interfacial interaction and excellent performance of silica/epoxy group-functionalized styrene-butadiene rubber (SBR) nanocomposites without any coupling agent[J]. Composites Part B-ENGINEERING, 2017, 114: 356-364.
[33] QIAO H, XU W, CHAO M, et al. Preparation and performance of Silica/Epoxy Group-Functionalized biobased elastomer nanocomposite[J]. Industrial & Engineering Chemistry Research, 2017, 56(4): 881-889.
[34] SHEN J, LI X, SHEN X, et al. Insight into the Dispersion Mechanism of Polymer-Grafted Nanorods in Polymer Nanocomposites: A Molecular Dynamics Simulation Study[J]. Macromolecules, 2017, 50(2): 687-699.
[35] CHEN Y, LIU J, LIU L, et al. Tailoring the alignment of string-like nanoparticle assemblies in a functionalized polymer matrix via steady shear[J]. RSC Advances, 2017, 7(15): 8898-8907.
[36] LU Y, LIU J, HOU G, et al. From nano to giant? Designing Carbon nanotubes for rubber reinforcement and their applications for high performance tires[J]. Composites Science and Technology, 2016, 137: 94-101.
[37] WANG L, LIU H, LI F, et al. Stress-strain behavior of block-copolymers and their nanocomposites filled with uniform or Janus nanoparticles under shear: a molecular dynamics simulation[J]. Physical Chemistry Chemical Physics, 2016, 18(39): 27232-27244.
[38] LIU J, ZHENG Z, LI F, et al. Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile[J]. NANO Energy, 2016, 28: 87-96.
[39] LI F, LIU J, YANG H, et al. Numerical simulation and experimental verification of heat build-up for rubber compounds[J]. Polymer, 2016, 101: 199-207.
[40] GAO Y, CAO D, WU Y, et al. Controlling the conductive network formation of polymer nanocomposites filled with nanorods through the electric field[J]. Polymer, 2016, 101: 395-405.
[41] ZHENG Z, LI F, LIU H, et al. Tuning the structure and mechanical property of polymer nanocomposites by employing anisotropic nanoparticles as netpoints[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 25090-25099.
[42] WANG Z, ZHENG Z, LIU J, et al. Tuning the mechanical properties of polymer nanocomposites filled with grafted nanoparticles by varying the grafted chain length and flexibility[J]. Polymers, 2016, 8(9): 270.
[43] ZHENG Z, LIU H, SHEN J, et al. Tailoring the static and dynamic mechanical properties of Tri-Block copolymers through molecular dynamics simulation[J]. Polymers, 2016, 8(9): 335.
[44] WANG L, ZHENG Z, DAVRIS T, et al. Influence of morphology on the mechanical properties of polymer nanocomposites filled with uniform or patchy nanoparticles[J]. Langmuir, 2016, 32(33): 8473-8483.
[45] YANG Z, LIU J, LIAO R, et al. Rational design of covalent interfaces for graphene/elastomer nanocomposites[J]. Composites Science and Technology, 2016, 132: 68-75.
[46] LIU J, SHEN J, CAO D, et al. Computer simulation of dispersion and interface in polymernanocomposites[J]. ACTA PolymericaSinica, 2016(8): 1048-1061.
[47] ZHENG Z, WANG Z, WANG L, et al. Dispersion and shear-induced orientation of anisotropic nanoparticle filled polymer nanocomposites: insights from molecular dynamics simulation[J]. Nanotechnology, 2016, 27(26): 265704.
[48] WANG L, WANG W, FU Y, et al. Enhanced electrical and mechanical properties of rubber/graphene film through layer-by-layer electrostatic assembly[J]. Composites Part B-ENGINEERING, 2016, 90: 457-464.
[49] GAO Y, WU Y, LIU J, et al. Controlling the electrical conductive network formation of polymer nanocomposites via polymer functionalization[J]. Soft Matter, 2016, 12(48): 9738-9748.
[50] ZHENG Z, SHEN J, LIU J, et al. Tuning the visco-elasticity of elastomeric polymer materials via flexible nanoparticles: insights from molecular dynamics simulation[J]. RSC Advances, 2016, 6(34): 28666-28678.
[51] GAO Y, CAO D, WU Y, et al. Destruction and recovery of a nanorod conductive network in polymer nanocomposites via molecular dynamics simulation[J]. Soft Matter, 2016, 12(12): 3074-3083.
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
北京化工大学材料科学与工程学院导师教师师资介绍简介-刘 军
本站小编 Free考研考试/2020-05-11
相关话题/北京化工大学 材料科学与工程学院
北京化工大学材料科学与工程学院导师教师师资介绍简介-卢咏来
卢咏来研究员/博导办公室:北方安华大厦706电话:E-mail:luyonglai@mail.buct.edu.cn研究领域:橡胶纳米复合材料极端条件下服役硅弹性体材料导热弹性体复合材料高性能新结构轮胎教育背景工作经历科研成果1994-1998,北京化工大学,橡塑工程专业,大学本科1998-2001 ...北京化工大学考研导师 本站小编 Free考研考试 2020-05-11北京化工大学材料科学与工程学院导师教师师资介绍简介-刘 力
刘力教授/博导办公电话:E-mail:liul@mail.buct.edu.cn研究领域:1.橡胶基功能与特种复合材料(包括稀土功能材料-高能粒子防护,橡胶基导热材料);2.绿色轮胎橡胶材料(包括石墨烯基高性能橡胶复合材料、高填充纳米SiO2粒子改性橡胶材料、高气体阻隔二维铝镁水滑石/橡胶纳米复合材 ...北京化工大学考研导师 本站小编 Free考研考试 2020-05-11北京化工大学材料科学与工程学院导师教师师资介绍简介-马贵平
马贵平研究员,博士生导师化新楼B217邮箱:magp@mail.buct.edu.cn研究领域:1天然高分子生物医用材料研发及产业化2微纳米材料的设计及在环境和能源应用3静电纺丝纳米纤维设计及柔性器件应用教育背景工作经历科研成果2006.9-2009.6北京化工大学材料科学与工程学院获工学博士学位; ...北京化工大学考研导师 本站小编 Free考研考试 2020-05-11北京化工大学材料科学与工程学院导师教师师资介绍简介-吕亚非
吕亚非研究员/博导办公室:有机楼318E-mail:luyf@mail.buct.edu.cn研究领域:1.摩擦聚合物复合材料2.自愈合聚合物和复合材料教育背景工作经历科研成果1984.3-1987.8:四川大学高分子研究所,博士1978.9-1981.12:郑州大学化学系,硕士1973.9-197 ...北京化工大学考研导师 本站小编 Free考研考试 2020-05-11北京化工大学材料科学与工程学院导师教师师资介绍简介-马育红
马育红教授/博导办公室:科技大厦916办公电话:64416338E-mail:mayh@mail.buct.edu.cn研究领域:1.活性自由基聚合及接枝聚合2.复合介电材料教育背景工作经历科研成果1999.9-2003.12:北京化工大学,材料学,博士1987.9-1990.4:北京化工学院,高分 ...北京化工大学考研导师 本站小编 Free考研考试 2020-05-11北京化工大学材料科学与工程学院导师教师师资介绍简介-马洪洋
马洪洋教授/博导办公室:综合楼A座304办公电话:E-mail:mahy@mail.buct.edu.cn研究领域:1.高效纳米纤维水/空气净化膜的设计研发2.天然多糖纳米纤维的制备及应用3.高分子纳米复合材料的成型加工教育背景工作经历科研成果1997:吉林大学化学系,学士学位2000:吉林大学化学 ...北京化工大学考研导师 本站小编 Free考研考试 2020-05-11北京化工大学材料科学与工程学院导师教师师资介绍简介-孟庆函
孟庆函教授/博导办公室:综合楼A403室电话:Fax:Email:qhmeng@mail.buct.edu.cn北京市朝阳区北三环东路15号,北京化工大学52信箱邮编:100029研究室网站http://www.cmse1.buct.edu.cn/membranes/研究领域:1、新型纳米碳材料的研 ...北京化工大学考研导师 本站小编 Free考研考试 2020-05-11北京化工大学材料科学与工程学院导师教师师资介绍简介-毛立新
毛立新教育背景工作经历科研成果 ...北京化工大学考研导师 本站小编 Free考研考试 2020-05-11北京化工大学材料科学与工程学院导师教师师资介绍简介-聂 俊
聂俊教授/博导办公室:化新楼B座217办公电话:**E-mail:niejun@mail.buct.edu.cn研究领域:1.光聚合基础与应用研究:基于光的化学反应及聚合。2.可再生资源的高效利用,包括植物油、糖类、天然高分子等。3.生物材料:包括口腔、骨科、皮肤修复材料等。教育背景工作经历科研成果 ...北京化工大学考研导师 本站小编 Free考研考试 2020-05-11北京化工大学材料科学与工程学院导师教师师资介绍简介-孟 焱
孟焱教授办公室:科技大厦1115办公电话:E-mail:mengyan@mail.buct.edu.cn研究领域:超支化分子的制备与性能(具有刚性骨架的超支化环氧,超支化荧光分子)高性能环氧的制备与固化(低介电环氧和耐高温环氧,固化过程优化)高分子复合材料及合金(轻质复合材料与合金、高性能低介电环氧 ...北京化工大学考研导师 本站小编 Free考研考试 2020-05-11