删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

北京航空航天大学机械工程及自动化学院导师教师师资介绍简介-孟宝 Bao MENG

本站小编 Free考研考试/2020-04-24



孟 宝 Bao MENG

出生年月
1985年9月
籍贯
河南

职称
副教授(博士生导师)
学历
博士研究生

电话

办公室
新主楼B435

系别
飞行器制造工程系
职务


电子信箱
mengbao@buaa.edu.cn
传真


个人主页
http://shi.buaa.edu.cn/mengbao/

&学习经历

?2008/09-2014/03,北京航空航天大学,机械工程及自动化学院,博士研究生(硕博连读)
?2004/09-2008/07,北京航空航天大学,机械工程及自动化学院,本科生

?工作经历

?2016/01-至今,北京航空航天大学,机械工程及自动化学院,副教授、博士生导师
?2014/05-2015/12,香港理工大学,机械工程系,助理研究员

O研究领域

r 复杂加载路径下合金板材屈服强化与塑性失稳的多尺度表征
主要研究超薄板材屈服强化特性的尺度效应及其本构表征,复杂加载路径下超薄板材塑性失稳行为及其预测模型,箔材成形性能与多尺度实验技术,难变形超薄板循环塑性变形行为与回弹预测模型,微塑性变形过程中尺度效应机理及晶体塑性模拟。

r 高超声速强预冷发动机换热器形性协同制造技术
主要研究特种能场对耐高温材料变形行为的作用机理,多能场辅助薄壁毛细管成形基础理论及技术,铌基合金超高耐热结构材料-结构一体化设计与制造技术,层板式换热结构级进微成形与扩散连接技术。


r 高性能医疗器件微细成形理论与形性精准调控
主要研究超细晶生物相容材料制备技术,纳米晶锌合金常低温超塑变形机理,生物材料腐蚀行为的尺度效应,钛合金微构件高温微成形技术,高性能可降解医用构件的结构与性能精准调控。

r 航空复杂超薄壁构件多向加载3D液压成形技术
主要研究封严环构件3D液压成形过程中失效形式与判别模型,双向同步加载液压成形智能化回弹补偿与加载路径设计,复杂构件3D液压成形缺陷形成机理与精度控制,数字化工艺分析设计系统与知识库。

具备的实验条件如下:
自主研制的国内首台具有全数字控制的多功能微型板材双轴双向拉伸实验机、进口微型电子万能实验机、超塑成形实验机、超声振动辅助微成形平台、脉冲电流辅助微成形平台、电磁成形设备、微尺度循环剪切实验装置、等通道挤压实验装置、板材成形性能成套设备、非应变测量系统、高真空热处理炉、液压成形设备以及自主开发的子程序等软件系统。


荣誉及奖励

?2015年,北京航空航天大学 “卓越百人”
?2015年,Honorable Mention Paper Award at the 4M/ICOMM2015Conference
?2015年,北京航空航天大学优秀博士学位论文
?2008年,北京地区高等学校优秀毕业生

:开授课程

Specialty Course Design for International Students、研究生课程《微细成形理论及技术》

_教学及科研成果

长期从事精密与微细成形技术领域的教学与科研工作,主持国家自然科学基金、国防基础科研计划、北京市自然科学基金、国防科技项目基金、装发预研基金、中国航发产学研合作等项目10余项,参与航空工业成飞、洪都,中国航发兰翔、南方、东安等企业新型号攻关,在微纳尺度材料力学行为与表征、多能场形性协同控制理论、薄壁复杂结构整体制造等方面取得重要进展,研制出国内首台具有全数字控制的多功能微型双轴双向拉伸试验机。以第一/通讯作者发表SCI论文30余篇,获授权发明专利4项,其中2项已实现成果转化。
(一)主要科研项目
1) 2020/01-2023/12,国家自然科学基金面上项目(**):“高温合金超薄板循环塑性变形的微尺度效应及其本构建模”,主持
2) 2020/01-2021/12,中国航空发动机集团产学研合作项目:“航空发动机燃烧室帽罩精准成形技术研究”,主持
3) 2020/01-2022/12,GF科研项目基金:“***多能场活化形性一体微成形技术”,主持
4) 2019/01-2020/12,国防科工局强基工程军工“双百”工艺攻关项目:“脉冲电流辅助高温合金薄壁毛细管微塑性成形技术”,主持
5) 2019/01-2020/12,装备预先研究项目:“大面积阵列微流道结构电流场辅助辊压成形技术”,主持
6) 2019/01-2021/12,中国航发创新基金:“航空发动机***精确成形成性一体化技术研究”,参与
7) 2019/09-2020/09,中国航发兰翔公司项目:“XX机匣中段成形”,主持
8) 2018/01-2020/12,装备预研领域基金:“钛合金微齿轮结构脉冲电流辅助塑性成形技术”,课题负责人
9) 2018/01-2019/12,四川省重点研发计划:“面向大型复杂钣金构件的新型复合成形工艺技术研究与应用”,课题负责人,已结题
10) 2018/01-2019/12,装备预研重点实验室基金项目:“高超声速强预冷航空发动机关键技术研究”,参与,已结题
11) 2017/01-2019/12,国家自然科学基金(**):“几何和晶粒尺度效应对金属薄板屈服强化特性及屈服准则影响规律的研究”,主持,已结题
12) 2017/01-2019/12,北京市自然科学基金(**):“生物可降解锌合金小直径血管支架超塑微成形技术基础研究”,主持,已结题
13) 2017/01-2021/12,国家自然科学基金重点项目(**):“特种能场塑性微成形新方法与理论基础研究”, 项目参与人
14) 2017/05-2019/05,先进焊接与连接国家重点实验室开放课题基金:“密集阵列式薄壁微结构连接工艺研究”,主持,已结题
15) 2016/10-2018/09,航空科学基金:“***超声振动辅助微细成形技术研究”,主持,已结题
16) 2016/09-2017/12,航空工业成飞公司科研项目:“复杂钣金薄壁件充液成形技术”,主持,已结题

(二)近五年代表性期刊论文
1) Z.Y. Cai, B. Meng, M. Wan, X.D. Wu, M.W. Fu* (2020) A modified yield function for modeling of the evolving yielding behavior and micro-mechanism in biaxial deformation of sheet metals, International Journal of Plasticity, https://doi.org/10.1016/j.ijplas.2020.102707.
2) Y.C. Zhao, M. Wan, B. Meng*, J. Xu, D.B. Shan (2019) Pulsed current assisted forming of ultrathin superalloy sheet: Experimentation and modelling, Materials Science and Engineering: A, 767: 138412.
3) B. Meng, J.J. Shi, Y.Y. Zhang, C. Cheng, B.L. Ma, M. Wan* (2019) Feasibility evaluation of failure models for predicting forming limit of metal foils, Chinese Journal of Aeronautics, https://doi.org/10.1016/j.cja.2019.09.002.
4) C. Cheng, M. Wan, B. Meng*, M.W. Fu (2019) Characterization of the microscale forming limit for metal foils considering free surface roughening and failure mechanism transformation, Journal of Materials Processing Technology, 272: 111-124.
5) B. Meng, B.N. Cao, M. Wan*, C.J. Wang, D.B. Shan (2019) Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet, International Journal of Mechanical Sciences, 157-158: 609-618.
6) B. Meng, W.H. Wang, Y.Y. Zhang, M. Wan* (2019) Size effect on plastic anisotropy in microscale deformation of metal foil, Journal of Materials Processing Technology, 271: 46-61.
7) C. Cheng, M. Wan, B. Meng*, R. Zhao, W.P. Han (2019) Size effect on the yield behavior of metal foil under multiaxial stress states: Experimental investigation and modelling, International Journal of Mechanical Sciences, 151: 760-771.
8) B. Meng, Z. Du, C. Li*, M. Wan (2019) Constitutive behavior and microstructural evolution in hot deformed 2297 Al-Li alloy, Chinese Journal of Aeronautics, https://doi.org/10.1016/j.cja.2019.03.042.
9) B. Meng, M.W. Fu*, S.Q. Shi (2018)Deformation characteristic and geometrical size effect in continuous manufacturing of cylindrical and variable-thickness flanged microparts, Journal of Materials Processing Technology, 252: 546-558.
10) B. Meng, Y.Y. Zhang, C. Cheng, J.Q. Han*, M. Wan(2018)Effect of plastic anisotropy on microscale ductile fracture and microformability of stainless steel foil, International Journal of Mechanical Sciences, 148: 620-635.
11) W.D. Li, L.X. Ma, M. Wan, J.W. Peng, B. Meng*(2018)Modeling and simulation of machining distortion of pre-bent aluminum alloy plate, Journal of Materials Processing Technology, 258: 189-199.
12) C. Cheng, M. Wan, X.D. Wu, Z.Y. Cai, R. Zhao, B. Meng* (2017) Effect of yield criteria on the formability prediction of dual-phase steel sheets, International Journal of Mechanical Sciences, 133:28-41.
13) W. D. Li, B. Meng*, C. Wang, M. Wan, L. Xu (2017) Effect of pre-forming and pressure path on cumulative deformation in multi-pass hydrodynamic deep drawing process, International Journal of Mechanical Sciences, 121:171-80.
14) C. Cheng, B. Meng*, J.Q. Han, M. Wan, X.D. Wu, R. Zhao (2017) A modified Lou-Huh model for characterization of ductile fracture of DP590 steel, Materials & Design, 118:89-98.
15) F. Gao, W.D. Li*,B. Meng, M. Wan, X. Zhang, X. Han (2017) Rheological law and constitutive model for superplastic deformation of Ti-6Al-4V, Journal of Alloys and Compounds, 701:177-185.
16) B. Meng, M.W. Fu*, S.Q. Shi (2017) Deformation characteristic and geometrical size effect in continuous manufacturing of cylindrical and variable-thickness flanged microparts, Journal of Materials Processing Technology, 252: 546-558.
17) C. Wang, B. Meng*, M. Wan, L. Xu (2017) Process window calculation and pressure locus optimization in hydroforming of conical box with double concave cavity, International Journal of Advanced Manufacturing Technology, 91(1-4): 847-858.
18) B. Meng, M.W. Fu* (2016) Deformation behavior and microstructure evolution in thermal-aided mesoforming of titanium dental abutment. Materials & Design, 89:1283-1293.
19) B. Meng, M.W. Fu*, C.M. Fu (2015) Ductile fracture and deformation behaviors in progressive microforming. Materials & Design, 83:14-25.
20) B. Meng, M.W. Fu* (2015) Size effects on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening. Materials & Design, 83:400-412.
21) B. Meng, M.W. Fu*, C.M. Fu, J.L. Wang (2015) Multivariable analysis of micro shearing process customized for progressive forming of micro-parts. International Journal of Mechanical Sciences, 93:191-203.
22) B. Meng, M.W. Fu*, M. Wan (2015) Drawability and frictional behavior of pure molybdenum sheet in deep-drawing process at elevated temperature. International Journal of Advanced Manufacturing Technology, 78:1005-1014.

(三)会议论文
1) Y.Z. Liu, B. Meng, Y.C. Zhao, M. Wan, Microstructure evolution and forming quality in electrically-assisted drawing of thin-walled superalloy capillary. The 12th Asian Workshop on Micro/Nano Forming Technology, 2019.07.
2) Z. Du, B. Meng, M. Wan, Constitutive relationship for modelling superplastic behavior of Zn-0.05Mg biodegradable alloy. The 2nd Asian Pacific Symposium on Technology of Plasticity, 2019.07.
3) C. Cheng, M. Wan, B. Meng*, Size effect on the forming limit of sheet metal in micro-scaled plastic deformation considering free surface roughening. Procedia Engineering, 2017. 207(Supplement C): 1010-1015.
4) C. Wang, B. Meng*, M. Wan, Quick establishment of backpressure path in sheet hydroforming process, 2017, 896: 012011.
5) M.W. Fu, B. Meng, C.M. Fu. Dimensional accuracy and deformation behaviors in meso-scaled progressive forming of two-level flanged parts. 4M/ICOMM2015, March 30-April 2, 2015, Milano, Italy. The paper received the “Honourable Mention Paper Award” (3/148).
6) M.W. Fu, B. Meng. Review on progressive microforming of bulk metal parts directly using sheet metals. The 4th International Conference on New Forming Technology, August 6-9, 2015, Scotland, UK.

(四)授权或受理的发明专利
1) 孟宝,万敏,周应科,吴向东,周子钊. 用于难变形材料热成形设备的快速降温系统, 专利号:ZL7.3,授权日期:2015/05/06.
2) 孟宝,万敏,周应科,吴向东,万美湾. 一种用于板料热成形的可移动测温装置,专利号:ZL9.0,授权日期:2015/10/21.
3) 孟宝,万敏,周应科,吴向东,赵睿. 一种用于板料拉深成形液压机的组合油缸,专利号:ZL3.3,授权日期:2015/08/26.
4) 孟宝,万敏,周应科,吴向东,赵睿. 一种用于真空电阻加热炉的水冷电极装置,专利号:ZL9.3,授权日期:2015/11/25.
5) 孟宝,万敏,吴向东,熊晶洲,程诚,赵越超. 一种微尺度双轴双向加载试验机,2018.4.19,申请号:6.7
6) 孟宝, 王秀萍, 杜喆, 万敏. 一种用于锌镁合金晶粒细化的等径角挤压模具, 2019.05.10, 申请号:3.4
7) 吴向东,马博林,万敏,周应科,孟宝. 一种多向加载通用金属板材性能试验机,申请号:CN8.3,申请日期:2015年5月18日,公开日:2015年8月19日.
8) 孟宝, 刘义哲, 赵越超. 一种薄壁毛细管电辅助拉拔加电装置及方法, 发明专利, 申请日:2019年5月24日,申请号:3.5.
9) 孟宝, 曹伯楠, 万敏, 韩金全, 赵睿. 一种超声振动辅助高温合金薄壁毛细管形性调控装置, 发明专利, 申请日:2019年6月14日,申请号:8.9.
10) 孟宝, 宋炳毅, 万敏, 赵越超. 一种高强度循环剪切试验夹具, 发明专利, 申请日:2019年4月16日, 公开号:CNA.

学术与社会服务
Q中国机械工程学会塑性工程分会青年工作委员会委员
Q担任Journal of Materials Processing Technology、Materials & Design, International Journal of Mechanical Sciences 、Tribology International、Chinese Journal of Aeronautics、Journal of Manufacturing Processes、Chinese Journal of Mechanical Engineering、机械工程学报、华中科技大学学报(自然科学版)、南京航空航天大学学报、高技术通讯(英文版)等多部杂志审稿人。



Curriculum Vitae (CV)

Meng Bao (Dr)
Associate Professor, Doctoral Supervisor
Email: mengbao@buaa.edu.cn Tel.: +86 10 8233 8613

Area of Specialization
Micro/Nano-scaled forming technology; Multi-scale material behavior and characterization; Crystal plasticity theory and simulation; Exciting fields assisted microforming technologies.

Description
Dr. B. Meng received his B. Eng and PhD in aerospace manufacturing engineering from Beihang University in Beijing, China, and then worked as a research associate in Hong Kong Polytechnic University from May 2014 to December 2015. In January 2016, he joined the Beihang University as a faculty member. His research is devoted to developing micro-scale and precision forming technologies. His expertise concerns micro/nano-scale forming technologies, multi-scale material behavior and characterization, crystal plasticity theory, and special energy fields assisted microforming technologies. Dr. Meng is also serving as an invited reviewer for many SCI journals. He has over 20 papers published/accepted by SCI journals with over 150 citations arising from his researches in recent five years.

Recent Publications
1) Z.Y. Cai, B. Meng, M. Wan, X.D. Wu, M.W. Fu* (2020) A modified yield function for modeling of the evolving yielding behavior and micro-mechanism in biaxial deformation of sheet metals, International Journal of Plasticity, https://doi.org/10.1016/j.ijplas.2020.102707.
2) Y.C. Zhao, M. Wan, B. Meng*, J. Xu, D.B. Shan (2019) Pulsed current assisted forming of ultrathin superalloy sheet: Experimentation and modelling, Materials Science and Engineering: A, 767: 138412.
3) B. Meng, J.J. Shi, Y.Y. Zhang, C. Cheng, B.L. Ma, M. Wan* (2019) Feasibility evaluation of failure models for predicting forming limit of metal foils, Chinese Journal of Aeronautics, https://doi.org/10.1016/j.cja.2019.09.002.
4) C. Cheng, M. Wan, B. Meng*, M.W. Fu (2019) Characterization of the microscale forming limit for metal foils considering free surface roughening and failure mechanism transformation, Journal of Materials Processing Technology, 272: 111-124.
5) B. Meng, B.N. Cao, M. Wan*, C.J. Wang, D.B. Shan (2019) Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet, International Journal of Mechanical Sciences, 157-158: 609-618.
6) B. Meng, W.H. Wang, Y.Y. Zhang, M. Wan* (2019) Size effect on plastic anisotropy in microscale deformation of metal foil, Journal of Materials Processing Technology, 271: 46-61.
7) C. Cheng, M. Wan, B. Meng*, R. Zhao, W.P. Han (2019) Size effect on the yield behavior of metal foil under multiaxial stress states: Experimental investigation and modelling, International Journal of Mechanical Sciences, 151: 760-771.
8) B. Meng, Z. Du, C. Li*, M. Wan (2019) Constitutive behavior and microstructural evolution in hot deformed 2297 Al-Li alloy, Chinese Journal of Aeronautics, https://doi.org/10.1016/j.cja.2019.03.042.
9) B. Meng, M.W. Fu*, S.Q. Shi (2018)Deformation characteristic and geometrical size effect in continuous manufacturing of cylindrical and variable-thickness flanged microparts, Journal of Materials Processing Technology, 252: 546-558.
10) B. Meng, Y.Y. Zhang, C. Cheng, J.Q. Han*, M. Wan(2018)Effect of plastic anisotropy on microscale ductile fracture and microformability of stainless steel foil, International Journal of Mechanical Sciences, 148: 620-635.
11) W.D. Li, L.X. Ma, M. Wan, J.W. Peng, B. Meng*(2018)Modeling and simulation of machining distortion of pre-bent aluminum alloy plate, Journal of Materials Processing Technology, 258: 189-199.
12) C. Cheng, M. Wan, X.D. Wu, Z.Y. Cai, R. Zhao, B. Meng* (2017) Effect of yield criteria on the formability prediction of dual-phase steel sheets, International Journal of Mechanical Sciences, 133:28-41.
13) W. D. Li, B. Meng*, C. Wang, M. Wan, L. Xu (2017) Effect of pre-forming and pressure path on cumulative deformation in multi-pass hydrodynamic deep drawing process, International Journal of Mechanical Sciences, 121:171-80.
14) C. Cheng, B. Meng*, J.Q. Han, M. Wan, X.D. Wu, R. Zhao (2017) A modified Lou-Huh model for characterization of ductile fracture of DP590 steel, Materials & Design, 118:89-98.
15) F. Gao, W.D. Li*,B. Meng, M. Wan, X. Zhang, X. Han (2017) Rheological law and constitutive model for superplastic deformation of Ti-6Al-4V, Journal of Alloys and Compounds, 701:177-185.
16) B. Meng, M.W. Fu*, S.Q. Shi (2017) Deformation characteristic and geometrical size effect in continuous manufacturing of cylindrical and variable-thickness flanged microparts, Journal of Materials Processing Technology, 252: 546-558.
17) C. Wang, B. Meng*, M. Wan, L. Xu (2017) Process window calculation and pressure locus optimization in hydroforming of conical box with double concave cavity, International Journal of Advanced Manufacturing Technology, 91(1-4): 847-858.
18) B. Meng, M.W. Fu* (2016) Deformation behavior and microstructure evolution in thermal-aided mesoforming of titanium dental abutment. Materials & Design, 89:1283-1293.
19) B. Meng, M.W. Fu*, C.M. Fu (2015) Ductile fracture and deformation behaviors in progressive microforming. Materials & Design, 83:14-25.
20) B. Meng, M.W. Fu* (2015) Size effects on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening. Materials & Design, 83:400-412.
21) B. Meng, M.W. Fu*, C.M. Fu, J.L. Wang (2015) Multivariable analysis of micro shearing process customized for progressive forming of micro-parts. International Journal of Mechanical Sciences, 93:191-203.
22) B. Meng, M.W. Fu*, M. Wan (2015) Drawability and frictional behavior of pure molybdenum sheet in deep-drawing process at elevated temperature. International Journal of Advanced Manufacturing Technology, 78:1005-1014.

Research Interests:

Topic 1: Multiscale Characterization of Yielding, Hardening and Plastic Instability of Alloy Sheets under Complex Loading Paths

Funded Projects:
1) Research on geometry and grain size effects on sheet metal yielding and hardening behaviors and validity of yield criteria, National Science Foundation of China (No. **), 1 Jan, 2017 to 31 Dec, 2019.
2) Development and establishment of biaxial loading system for the characterization of material yielding behavior, the Research Grant of Beihang University, Sep 01, 2016 to Dec 31, 2018.

Project Description:
With the ubiquitous trend of product miniaturization and rapid development of microforming technology, a demand for the precision description of multi-scale deformation behavior of sheet metal increases urgently. Due to the size effect with miniaturization, the material yielding behavior and hardening law may be different under multi-scale, meanwhile, the knowledge of macroscopic plastic deformation can not be completely applicable to micro-scaled plastic forming process. In addition, the multi-scale yielding and hardening behaviors and the validity of existing yield criteria and hardening models have not yet been systematically explored and studied, which would cripple the wide applications of microforming technology in production of microparts. In this research, the yielding behavior and hardening law of sheet metal in multi-scale plastic deformation process will be systematically explored and how different geometry and grain size effects, material microstructure evolution affect them will be also extensively explored via multiaxial loading experiment and finite element method. The validity of yield criteria and hardening models, which are widely used in macro-scale forming, will be evaluated under different workpiece geometry and grain size scenarios. By employing the outcome of size affected yielding and hardening characteristics, the yield criterion and hardening model, which are suitable for describing micro-scaled plastic deformation of sheet metal will be established.

Topic 2: Microscale Plastic Deformation Theory and Precise Control of Shape & Performance for Medical Devices

Funded Projects:
Beijing Municipal Natural Science Foundation, Basic research on superplastic microforming technology of biodegradable Zinc alloy vascular stent (No. **), 2017/01-2019/12.

Project Description:

The investigation can be subdivided into the fabrication technology of ultrafine crystal biocompatible materials, the mechanism of low-temperature superplastic deformation of nanocrystalline zinc alloy, the size dependent corrosion behavior of biomaterials, the thermally assisted microforming technology of titanium alloy micro-components, and the precise control of structure and performance for high-performance degradable medical components.

Topic 3: Synergetic Manufacturing Technology of Heat Exchanger for Hypersonic Pre-cooling Engine

Funded Projects:
1) Research on new method and theoretical foundation of special energy fields assisted microforming, National Science Foundation of China (No. **), 1 Jan, 2017 to 31 Dec, 2021.
2) Research on pulsed current assisted microforming of superalloy thin-walled capillary, “Double Hundred” Project of National Defense Science and Technology Bureau, 1 Jan, 2019 to 31 Dec, 2020.

Project Description:
Due to the extreme service environment of high-temperature, high-speed and high-pressure, the requirements for the dimensional accuracy, uniformity of wall thickness and comprehensive mechanical properties of the capillary tubes are vitally strict. The current multi-pass drawing process can not accurately control the geometric dimension and microstructure property, and thus the product quality can not be guaranteed. This project is aimed at realizing the batch and precision manufacturing of capillary tubes, carrying out the research of new theory and new technology of microforming assisted by the excitation of special energy fields. The influence of size effect and external exciting field on the deformation behavior of high-temperature alloy and its forming quality will be extensively investigated. Furthermore, the process route and forming parameter configuration will be determined and optimized. Based on process analysis and finite element simulation, the coupled effects of physical fields and scale effect on process configuration, defect formability and microstructure evaluation will be determined. Through the case study, the precision, batch and controllable manufacturing of superalloy thin-walled capillary will be achieved.

Topic 4: 3D Hydroforming Technology for Aeronautical complex ultra-thin wall components
Funded Projects:
Research on the accurate forming technology of metallic bellows for aviation engine, Innovation fund, 1 Jan, 2019 to 31 Dec, 2021.

Project Description:
The investigation involves the failure model for 3D hydroforming process of metallic sealing ring, springback compensation and loading path design for compound loading hydroforming, formation mechanism and precision control of forming defects of complex components, and digital process analysis system and knowledge base.


相关话题/自动化 机械工程