针对士兵和装甲车目标的尺度差异大以及目标距离远近造成的目标多尺度问题,以YOLOv4深度学习算法为基础,提出了一种多尺度目标检测方法. 通过针对性的数据增强方法丰富小目标样本的多样性,对输入图像进行分割预处理以提高网络输入小目标的分辨率,并基于特征金字塔网络实现大、中、小目标的分离检测,最后匹配检测结果并进行NMS处理去除冗余检测框,从而实现多尺度目标检测. 实验结果表明,本文方法在保持大目标检测效果的情况下,中、小目标的平均检测精度分别提升了1.20%和5.54%,有效提高了中、小目标的检测效果.
PDF全文下载地址:http://journal.bit.edu.cn/zr/article/exportPdf?id=0af7aef8-90c9-40eb-8d7c-8003d5f60a40
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)