智能驾驶场景下的人车冲突问题与行人过街行为密切相关,为使高级驾驶辅助系统(advanced driving assistance system, ADAS)具备识别行人过街意图的功能,并对人车碰撞事件预警,提出一种基于图表示学习(graph representation learning, GRL)方法的行人过街意图识别框架。它采用开源工具对行人骨架信息进行识别,采用图方法,以行人在一段运动过程内每一帧的骨架关键点为节点,以骨架自然连接关系、相关关系和时域关系为边建立图模型,实现对行人动作序列的表征。以图结构数据为输入,基于支持向量机(support vector machine, SVM)训练行人过街意图识别模型。在自动驾驶数据集PIE上对所提出方法进行评估,结果显示,行人过街意图分类准确率可达90.29%,所提出方法能够有效识别行人过街意图,对提高智能车决策安全性具有重要意义。
PDF全文下载地址:http://journal.bit.edu.cn/zr/article/exportPdf?id=b15a70be-7bf0-4b08-8f6f-e8c90006e840
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)