删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于FFRLS-AEKF的6轮足机器人电池SOC估计

本站小编 Free考研考试/2023-12-02

针对6轮足机器人动力电池的荷电状态(state of charge, SOC)估计精度低、电池模型准确度不高等问题,提出一种基于带遗忘因子的递推最小二乘(recursive least squares with forgetting factor,FFRLS)与自适应扩展卡尔曼滤波(adaptive extended Kalman filtering,AEKF)相结合的估计算法。首先通过FFRLS算法辨识建立动力电池等效模型参数;然后利用AEKF对SOC在线估计,并为参数辨识提供准确的开路电压;最后以机器人锂电池包为对象,在动态应力测试工况(dynamic stress test , DST)下实验验证了该算法可以准确地估算动力电池SOC,SOC估计相对误差在2.5%以内。
PDF全文下载地址:http://journal.bit.edu.cn/zr/article/exportPdf?id=98c074ff-b52b-477a-919a-76e4abc62ccd
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19