针对稀疏数据场景下,传统的多项式-狄利克雷模型存在一定的分类精度问题,提出一种基于变分推理的分层贝叶斯网络的参数估计方法. 通过在传统的多项式-狄利克雷模型中引入超先验,构建出的分层多项式-狄利克雷模型可用于贝叶斯网络中的条件分布估计. 对分层多项式-狄利克雷模型的先验依赖结构进行分析研究,提出一种快速准确的自组织变分推理算法. 与传统的分类模型相比,本文提出的分层多项式-狄利克雷模型在处理小数据集液体火箭发动机的故障分类中有显著的性能提高.
PDF全文下载地址:http://journal.bit.edu.cn/zr/article/exportPdf?id=da3397e8-a647-4120-b673-3f0955ccc894
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)