提出一种复杂系统内多源传感器的故障诊断方法.利用多源传感器数据之间的相关性,使用卷积神经网络提取不同传感器之间的联系和特征.在卷积网络中,设计了传感器数据标定模块使得网络更关注学习与故障信号相关的传感器数据.利用循环网络对传感器自身的时序特征建模,引入跳跃连接和辅助损失函数降低网络的训练难度.最后综合时空特征,一次计算得到故障分类结果和故障参数估计.仿真结果表明,改进后的CNN-GRU网络能够实时准确地诊断传感器的固定偏差故障和漂移偏差故障,传感器数据标定模块和跳跃连接的引入有效地提高了诊断算法的准确率和精度.
PDF全文下载地址:http://journal.bit.edu.cn/zr/article/exportPdf?id=20211201
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)