删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于深度随机森林的商品类超短文本分类研究

本站小编 Free考研考试/2023-12-02

近年来,随着移动通信和信息技术的发展,网络上和实际应用场景中需要处理越来越多的长度不超过20字并且不带有辅助标签信息的超短文本数据.超短文本因其固有的词义多义性、文本特征极度稀疏、上下文明显缺失以及明辨语义困难等特点,如何对其进行有效地分类成为文本分类领域亟需解决的新问题.本文针对传统的短文本分类方法KNN和决策树在商品类超短文本上存在的由于特征稀少而导致分类器性能不佳的问题,提出了一种基于深度随机森林的商品类超短文本分类方法.该方法采用"分流"策略,利用外部知识库进行辅助,对知识库中存在明确类别的商品名直接确定其分类,对无法直接抽取类别的商品名,采用Word2vec对其在外部知识库中的描述进行向量化,并利用深度随机森林对向量进行分类,同时不断优化分类器直到训练集大小达到设定的阈值.实验结果表明,与传统的分类方法KNN和决策树相比,本文提出的分类方法在平均准确率上分别提高了22.78%和17.22%,平均召回率上分别提高了22.85%和15.23%.
PDF全文下载地址:http://journal.bit.edu.cn/zr/article/exportPdf?id=20211205
相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19