针对合成孔径雷达(synthetic aperture radar,SAR)图像样本数据有限,且不同类别间的图像区分度不高导致识别困难的问题,提出一种应用于SAR图像识别的距离度量学习方法.该方法使用CNN网络得到图像的特征分布,利用LSTM网络加强图像间的关联性,基于余弦相似距离度量方法计算图像之间的匹配度,通过注意力机制后对结果进行分类.训练过程结合小样本学习的训练方式,采取预训练的策略进行实验.实验以公开的MSTAR数据集进行SAR图像识别,结果表明该方法准确率达到99.3%,比SVM方法提升2.5%.
PDF全文下载地址:http://journal.bit.edu.cn/zr/article/exportPdf?id=20210314
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)