现有研究集中于不带有时间空间信息或带有固定时间空间信息的活动序列相似度计算,没有从不同层次来度量用户行为序列的相似性,为了实现对用户行为多粒度多视角的动态认知,提出一种基于序列比对算法Needleman-Wunsch的多粒度时空序列比对算法(multi-granular spatiotemporal sequences alignment,MGSSA),扩展了NW算法的得分函数以结合时间、空间信息,通过粒度调控实现了从不同的粒度来计算时空事件序列的相似度.实验证明,多粒度时空序列比对算法MGSSA是有效且可行的.
PDF全文下载地址:http://journal.bit.edu.cn/zr/article/exportPdf?id=20210116
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)