 二维码(扫一下试试看!) | 基于CNN-BiLSTM的自动睡眠分期方法 | An Automatic Sleep Staging Method Based on CNN-BiLSTM | 投稿时间:2019-01-24 | DOI:10.15918/j.tbit1001-0645.2019.041 | 中文关键词:睡眠分期类别不平衡特征学习卷积神经网络长短时记忆网络 | English Keywords:sleep stage classificationclass imbalancefeature learningconvolutional neural networklong and short time memory network | 基金项目:国家"十三五"计划项目(SQ2018YFC200004) | | 摘要点击次数:1714 | 全文下载次数:1815 | 中文摘要: | 针对目前睡眠分期存在的依赖人工特征提取、无法识别长时关联数据中的时序模式、模型对EEG时序数据分期不准确等问题,提出一种基于CNN-BiLSTM的自动睡眠分期方法.将原始数据通过改进MSMOTE算法进行过采样形成类平衡数据,再通过CNN表达其高级特征,并馈送至BiLSTM中挖掘各睡眠阶段间的依赖关系,实现睡眠数据分期特征的自动学习和睡眠周期判定.在Sleep-EDF公开数据集上的实验结果表明,CNN-BiLSTM模型的分类准确率为92.21%.同时引入改进的MSMOTE过采样技术缓解因数据不平衡所导致的少数类睡眠期判定不准确问题.在原始数据集类不平衡的情况下,实现了睡眠数据自动分期,有效提高了睡眠分期模型的准确率,具有一定的实用价值. | English Summary: | To solve the problems, including the manual dependence in the extraction of sleep staging features, difficult identification to the timing pattern in long-term correlated data, and the inaccuracy of EEG timing data staging in the model, and so on, an automatic sleep staging method based on CNN-BiLSTM was proposed. Firstly, the original data was over-sampled with improving the MSMOTE algorithm to form the class equilibrium data. And then the advanced features were expressed by CNN and fed to BiLSTM to explore the dependency relationship between sleep stages, so as to realize the automatic learning and sleep cycle determination of sleep data staging characteristics. The experimental results on the Sleep-EDF open data set show that the classification accuracy of the CNN-BiLSTM model can reach 92.21%. The improved over-sampling technique of MSMOTE can alleviate the problem of inaccuracy in the determination of sleep stage. In the case of unbalanced class of original data set, automatic sleep data staging is realized, which can effectively improve the accuracy of sleep staging model, possessing a certain practical value. | 查看全文查看/发表评论下载PDF阅读器 | |
姜淑凤,刘宏发,周子业,崔超.间接法数字化印模及3D数据偏差对比实验研究[J].北京理工大学学报(自然科学版),2020,40(8):841~848.JIANGShu-feng,LIUHong-fa,ZHOUZi-ye,CUIChao.ExperimentalComparisonofIndirect ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张冬晓,陈亚洲,程二威,许彤.一种无人机数据链电磁干扰自适应新方法[J].北京理工大学学报(自然科学版),2020,40(8):880~887.ZHANGDong-xiao,CHENYa-zhou,CHENGEr-wei,XUTong.ANewMethodforUAV'sDatalinkAdapti ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21焦龙龙,罗森林,刘望桐,潘丽敏.结合路径标签和数据变异的模糊测试关键数据定位方法[J].北京理工大学学报(自然科学版),2020,40(9):1009~1017.JIAOLong-long,LUOSen-lin,LIUWang-tong,PANLi-min.KeyDataLocationMethod ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21倪俊,姜旭,熊周兵,周波.无人车大数据与云控制技术综述[J].北京理工大学学报(自然科学版),2021,41(1):1~8.NIJun,JIANGXu,XIONGZhoubing,ZHOUBo.OverviewofBigDataandCloudControlTechnologiesintheFiel ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21.北京理工大学学报2020年总目次(第40卷)[J].北京理工大学学报(自然科学版),2020,40(12):1369~1386..[J].TransactionsofBeijingInstituteofTechnology,2020,40(12):1369-1386.二维码(扫一下试试看!)北京理 ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21张之得,王正杰,郝智渊.基于数据驱动的小型柔性翼飞行器控制研究[J].北京理工大学学报(自然科学版),2021,41(2):177~185.ZHANGZhide,WANGZhengjie,HAOZhiyuan.ResearchonDataDrivenControlofaSmallFlexibleWi ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21严迎建,郑震,郭朋飞,朱春生.一种检测S盒能量信息泄漏的t检验方法[J].北京理工大学学报(自然科学版),2021,41(5):542~547.YANYingjian,ZHENGZhen,GUOPengfei,ZHUChunsheng.At-TestMethodforDetectingPowerIn ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21孙一博,孟秀云,邱文杰.基于表格形气动数据的滑翔飞行器轨迹优化[J].北京理工大学学报(自然科学版),2021,41(8):820~829,839.SUNYibo,MENGXiuyun,QIUWenjie.TrajectoryOptimizationofGlideVehiclesBasedonTab ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21罗森林,杨俊楠,潘丽敏,吴舟婷.面向信息与通信技术供应链网络画像构建的文本语义匹配方法[J].北京理工大学学报(自然科学版),2021,41(8):864~872.LUOSenlin,YANGJunnan,PANLimin,WUZhouting.TextSemanticMatchingMethodf ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21陈越洋,何行宽,李晨瑶.基于Retinex理论的电子内镜图像增强算法[J].北京理工大学学报(自然科学版),2021,41(9):985~989.CHENYueyang,HEXingkuan,LIChenyao.EndoscopicImageEnhancementBasedonRetinexTheo ... 北京理工大学科研学术 本站小编 Free考研考试 2021-12-21
| |